• Title/Summary/Keyword: 자동정보 추출

Search Result 1,996, Processing Time 0.026 seconds

Automatic detection of pulmonary nodules in X-ray chest images (폐의 X선 영상에서의 노쥴 자동 탐지 기법)

  • Seong, Won;Park, Jong-Won
    • Annual Conference of KIPS
    • /
    • 2002.04a
    • /
    • pp.767-770
    • /
    • 2002
  • 일반적으로 방사선 의사들(radialogists)이 폐 노쥴(pulmonary nodule)을 탐지하는 데는 실제적으로 30%의 실패율을 가진다고 알려져 있다. 만약 자동화된 시스템이 체스트 영상에서 의심스런 노쥴들의 위치들을 방사선 의사에게 알려줄 수 있다면 잘못 판단되는 노쥴들의 수를 잠재적으로 줄일 수 있다. 우리는 형태학적 필터들(morphological filters)과 두가지 특징-추출(feature-extraction) 기술들을 포함하는 컴퓨터 자동 처리 시스템을 구현하였다. 본 시스템에서는 첫째로 형태학적 필터(morphological filtering) 처리를 행한다. 이 과정은 원래의 영상에 침식(erosion)과 확장 (dilation)을 연이어서 행하는 것으로 처리가 어려운 X 선 영상을 좀 더 다루기 쉬운 상태로 바꿔주는 역할을 하게 된다. 둘째는 일차적으로 노쥴로서 컴퓨터에 선택된 의심 부분에 가해주는 특징-추출 테스트로서 이 작용은 노쥴로 감지되었으나 실제로는 노쥴이 아닌 경우인 false-positive 갑지들을 줄이기 위해서 사용된다. 그리하여 본 시스템은 노쥴의 정확한 판독이 어려운 폐의 X 선 영상에 적용되어 false-positive 들을 효과적으로 줄임으로써 보다 효율적인 폐 노쥴의 탐지를 가능하게 하였다.

  • PDF

Automatic Generation of Detection Patterns for Network Attack using the Decision Tree (결정트리를 이용한 네트워크 공격 탐지패턴의 자동생성 방법)

  • Jang, Ki-Young;Kim, Yong-Min;Kim, Min-Soo;Noh, Bong-Nam
    • Annual Conference of KIPS
    • /
    • 2003.11c
    • /
    • pp.1913-1916
    • /
    • 2003
  • 오용행위와 비정상행위 그리고 알려지지 않은 공격을 탐지하기 위해 필요한 규칙들을 추출하는 방법이 계속 연구되고 있다. 기존의 네트워크 공격에 대한 침입탐지시스템의 탐지 패턴은 전문가의 수작업에 의해 생성되어 왔고, 수정이 필요할 경우 수작업을 필요로 했다. 그러나 네트워크 공격은 매시간 다양화되고 변형되기 때문에 적절한 대응이 필요하다. 본 논문에서는 이같은 문제를 결정트리를 사용하여 네트워크 패킷 내에서 공격형태를 패턴화하여 자동으로 탐지 패턴을 추출하는 방법을 제안한다.

  • PDF

A Study on Improving the Performance of Financial Market Forecasting Using Large Exogenous Variables and Deep Neural Network (대규모 외생 변수와 Deep Neural Network를 사용한 금융 시장 예측의 성능 향상에 관한 연구)

  • Cheon, Sung-gil;Lee, Ju-Hong;Choi, Bumghi;Song, Jae-Won
    • Annual Conference of KIPS
    • /
    • 2020.05a
    • /
    • pp.435-438
    • /
    • 2020
  • 시장예측 문제를 해결하기 위하여 과거부터 꾸준한 연구가 진행되어왔다. 하지만 금융 시계열 데이터에는 분산이 일정하지 않으며 Non-stationarity 등 예측을 하는 것에 있어서 여러 가지 방해 요인이 존재한다. 또한 광범위한 데이터 변수는 기존에 사람이 직접 경험적으로 선택하는 것에 한계가 있기 때문에, 모델이 변수를 자동으로 추출할 수 있어야 한다. 본 논문에서는 여러 가지 금융 시계열 데이터의 문제를 고려하여 타임 스텝 정규화를 제안하며 자동 변수 추출을 위해 LSTM 형태의 오토 인코더 모델을 학습하였으며 LSTM 네트워크를 이용하여 시장 예측하는 모델을 제안한다. 해당 시스템은 실제 주식 거래나 시장 거래를 위하여 온라인 학습이 가능하며 긴 기간을 테스트 구간으로 실험한 결과 미래의 수익률을 예측하는 것에 있어서 우수한 성능을 보였다.

High Resolution Satellite Image Segmentation Algorithm Development Using Seed-based region growing (시드 기반 영역확장기법을 이용한 고해상도 위성영상 분할기법 개발)

  • Byun, Young-Gi;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.4
    • /
    • pp.421-430
    • /
    • 2010
  • Image segmentation technique is becoming increasingly important in the field of remote sensing image analysis in areas such as object oriented image classification to extract object regions of interest within images. This paper presents a new method for image segmentation in High Resolution Remote Sensing Image based on Improved Seeded Region Growing (ISRG) and Region merging. Firstly, multi-spectral edge detection was done using an entropy operator in pan-sharpened QuickBird imagery. Then, the initial seeds were automatically selected from the obtained multi-spectral edge map. After automatic selection of significant seeds, an initial segmentation was achieved by applying ISRG to consider spectral and edge information. Finally the region merging process, integrating region texture and spectral information, was carried out to get the final segmentation result. The accuracy assesment was done using the unsupervised objective evaluation method for evaluating the effectiveness of the proposed method. Experimental results demonstrated that the proposed method has good potential for application in the segmentation of high resolution satellite images.

도로 정보처리와 컴퓨터비죤에 관한 연구

  • Choe, Hyeong-Jin
    • The Magazine of the IEIE
    • /
    • v.15 no.1
    • /
    • pp.106-113
    • /
    • 1988
  • 현재 필자가 소속하고 있는 연구실에서는, 컴퓨터 아니메이숀, 컴퓨터 그래픽, 화상처리, 인공지능에 관한 연구등을 하고 있다. 본고에서는 화상처리에 관한 연구중에서, 본 연구실에서 최근에 발표한 컴퓨터 비죤에 관계있는 각종의 도로 정보처리에 관한 연구에 대해서 소개한다. 우선, 화상처리의 수법을 이용한 자동조종의 연구로서, 고속도로에서의 선행차의 자동동정에 관한 연구와 하프변환을 이용한 차량번호판 추출에 관한 연구에 대해서 소개한다. 다음에 도로망 지도처리에 관한 연구로서, 차재형 자동항법 시스템의 개요에 관한 소개와 최단시간 경로에 관한 연구, 도로지도의 자동판독에 관한 연구에 대해서 소개한다. 가까운 미래에, 점점 자동차의 자동화가 추진되고, 인공위성을 이용해서 자동차의 현재 위치를 정확하게 파악할 수 있게 되면, 본고에서 소개하는 연구들이 보다 중요한 의미를 가지게 되리라 생각한다.

  • PDF

A Real-Time Automatic Diagnosis System for Semiconductor Process (반도체 공정 실시간 자동 진단 시스템)

  • 권오범;한혜정;김계영
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.241-243
    • /
    • 2003
  • 일반적으로 사용되는 반도체 공정에 대한 진단 기법은 한 공정을 진행하기 전에 테스트 공정을 수행하여 공정의 진행 여부를 결정하고, 한 공정의 진행을 완료한 후에 다시 테스트 공정을 수행하여 공정의 결과를 진단하는 방법이다. 본 논문에서 제안하는 실시간 자동 진단 시스템은 기존 방법의 문제점인 자원의 낭비를 막고, 실시간으로 진단함으로써 시간의 낭비를 막는 진단 시스템을 제안한다. 실시간 자동 진단 시스템은 크게 시스템 초기화 단계, 학습 단계 그리고 예측 단계로 나누어진다. 초기화 단계는 진단할 공정에 대한 사전 입력값을 받아 시스템을 초기화하는 과정으로 공정장비 파라미터별 중요도 자동 설정 과정과 초기화 클러스터링으로 이루어진다. 학습 단계는 실시간으로 저장된 공정장치별 데이터와 계측기로부터 획득된 데이터를 이용하여 최적의 유사 클래스를 결정하는 단계와 결정된 유사 클래스를 이용하여 가중치를 학습하는 단계로 나누어진다. 예측 단계는 공정 진행 중 획득된 실시간 데이터를 학습 단계에서 결정된 파라미터별 가중치를 사용하여 공정에 대한 진단을 한다. 본 시스템에서 사용하는 클러스터링 알고리즘은 DTW(Dynamic Time Warping)를 이용하여 파라미터 데이터에 대한 특징을 추출하고 LBG(Linde, Buzo and Gray) 알고리즘을 사용하여 데이터를 군집화 한다.

  • PDF

A Study on Automatic Indexing System Using natural language Processing, Statistical Technique, Relevance Verification (자연어 처리, 통계적 기법, 적합성 검증을 이용한 자동색인 시스템에 관한 연구)

  • Yu, Chun-Sik;U, Seon-Mi;Yu, Cheol-Jung;Lee, Jong-Deuk;Gwon, O-Bong;Kim, Yong-Seong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.6
    • /
    • pp.1552-1562
    • /
    • 1998
  • 형태소 분석(Morphological Analysis)과 같은 언어학적 처리에 의존하는 기존의 한국어 문헌에 대한 자동색인 기법들은 품사의 애매모호함이나 복합명사의 처리 등으로 부담(overhead)이 크다. 또한 불용어 처리에 사용되는 불용어 리스트가 대상 문헌의 주제 분야별로 따로 구축되어야 하며 그 크기가 방대하다는 문제점이 있다. 이러한 문제점들을 해결하기 위해, 본 논문에서는 각 문헌의 텍스트에 대해 복합명사 처리나 애매모호함에 대한 엄격한 분석을 수행하지 않는 간단한 형태의 형태소 분석을 수행하여 단순명사들을 추출한다. 그런 후 이들 단순명사들을 이용하여 유한 오토마타(Finite Automata)를 구성하고, 구성된 유한 오토마타와 각 명사의 단어빈도(Term Frequency)에 의해 각 색인어 후보들의 중요도를 계산하는 자동색인 기법을 제안한다. 그 결과 품사의 애매모호함에 대한 처리나 복합명사의 처리에따른 부담을 줄일 수 있었으며, 선정된 색인어들과 수작업으로 선정한 색인어들의 비교 실험에 의해 제안한 자동색인 기법의 성능을 검증하였다.

  • PDF

Agent for File Format based Classification of the Attached File in E-Mail System (E-Mail 시스템의 첨부파일 형식별 자동분류 및 스팸 제거 에이전트 설계)

  • Hyun, Young-Soon;Jeong, Ok-Ran;Cho, Dong-Sub
    • Annual Conference of KIPS
    • /
    • 2003.11b
    • /
    • pp.801-804
    • /
    • 2003
  • 인터넷과 E-mail 의 사용자가 증가하게 되면서 대량의 메일을 송수신하는 경우, 메일에 대한 효율적 관리의 문제와 불필요한 메일에 대한 관리의 중요성이 부각되고 있다. 본 논문에서는 -mail 시스템의 첨부파일 형식별 자동분류 에이전트는 메일의 내용을 읽어 Keyword 를 검색, 추출한 뒤 불필요한 메일로 판단되는 경우 자동삭제 시키고 그렇지 않은 경우 카테고리별로 폴더를 생성하여 첨부파일 들을 형식별로 분류 시켜주는 E-mail 시스템의 첨부파일 형식별 자동분류 에이전트를 제안하였다. 수신된 메일을 일일이 확인하고 분류해야만 했던 기존의 시스템과는 달리 본 논문에서 제안하고자 하는 시스템을 이용했을 경우 노력과 시간을 절감하고 불필요한 메일에 의한 저장공간의 낭비감소와 첨부파일을 효과적으로 관리할 수 있다는 장점이 있다.

  • PDF

Research on the Development of Automatic Damage Analysis System for Railway Bridges using Deep Learning Analysis Technology Based on Unmanned Aerial Vehicle (무인이동체 기반 딥러닝 분석 기술을 활용한 철도교량 자동 손상 분석 기술 개발 연구)

  • Na, Yong-Hyoun;Park, Mi-Yeon
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2022.10a
    • /
    • pp.347-348
    • /
    • 2022
  • 본 연구에서는 무인이동체를 활용한 철도교량의 외관조사 점검을 보다 효율적이고 객관성 있게 수행하기 위하여 무인이동체를 통해 촬영된 이미지를 딥러닝 기반 분석기술을 활용하여 손상 자동으로 분석 하기위한 기술을 연구하였다. 철도교량의 외관 손상 중 균열, 콘크리트 박리·박락, 누수, 철근노출에 대한 손상 이미지를 추출하여 딥러닝 분석 모델을 생성하고 학습한 분석 모델을 적용한 시스템을 실제 현장에 적용 테스트를 수행하였으며 학습 구현된 분석모델의 검측 재현율을 검토한 결과 평균 95%이상의 감지성능을 검토할 수 있었다. 개발 제안된 자동손상분석 기술은 기존 육안점검 결과 대비 보다 객관적이고 정밀한 손상 검측이 가능하며 철도 유지관리 분야에서 무인이동체를 활용한 외관조사 업무를 수행함에 있어 기존 대비 객관적인 결과도출과 소요시간, 비용저감이 가능할 것으로 기대된다.

  • PDF

A Study on Automatically Information Collection of Underground Facility Using R-CNN Techniques (R-CNN 기법을 이용한 지중매설물 제원 정보 자동 추출 연구)

  • Hyunsuk Park;Kiman Hong;Yongsung Cho
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.3
    • /
    • pp.689-697
    • /
    • 2023
  • Purpose: The purpose of this study is to automatically extract information on underground facilities using a general-purpose smartphone in the process of applying the mini-trenching method. Method: Data sets for image learning were collected under various conditions such as day and night, height, and angle, and the object detection algorithm used the R-CNN algorithm. Result: As a result of the study, F1-Score was applied as a performance evaluation index that can consider the average of accurate predictions and reproduction rates at the same time, and F1-Score was 0.76. Conclusion: The results of this study showed that it was possible to extract information on underground buried materials based on smartphones, but it is necessary to improve the precision and accuracy of the algorithm through additional securing of learning data and on-site demonstration.