일반적으로 방사선 의사들(radialogists)이 폐 노쥴(pulmonary nodule)을 탐지하는 데는 실제적으로 30%의 실패율을 가진다고 알려져 있다. 만약 자동화된 시스템이 체스트 영상에서 의심스런 노쥴들의 위치들을 방사선 의사에게 알려줄 수 있다면 잘못 판단되는 노쥴들의 수를 잠재적으로 줄일 수 있다. 우리는 형태학적 필터들(morphological filters)과 두가지 특징-추출(feature-extraction) 기술들을 포함하는 컴퓨터 자동 처리 시스템을 구현하였다. 본 시스템에서는 첫째로 형태학적 필터(morphological filtering) 처리를 행한다. 이 과정은 원래의 영상에 침식(erosion)과 확장 (dilation)을 연이어서 행하는 것으로 처리가 어려운 X 선 영상을 좀 더 다루기 쉬운 상태로 바꿔주는 역할을 하게 된다. 둘째는 일차적으로 노쥴로서 컴퓨터에 선택된 의심 부분에 가해주는 특징-추출 테스트로서 이 작용은 노쥴로 감지되었으나 실제로는 노쥴이 아닌 경우인 false-positive 갑지들을 줄이기 위해서 사용된다. 그리하여 본 시스템은 노쥴의 정확한 판독이 어려운 폐의 X 선 영상에 적용되어 false-positive 들을 효과적으로 줄임으로써 보다 효율적인 폐 노쥴의 탐지를 가능하게 하였다.
오용행위와 비정상행위 그리고 알려지지 않은 공격을 탐지하기 위해 필요한 규칙들을 추출하는 방법이 계속 연구되고 있다. 기존의 네트워크 공격에 대한 침입탐지시스템의 탐지 패턴은 전문가의 수작업에 의해 생성되어 왔고, 수정이 필요할 경우 수작업을 필요로 했다. 그러나 네트워크 공격은 매시간 다양화되고 변형되기 때문에 적절한 대응이 필요하다. 본 논문에서는 이같은 문제를 결정트리를 사용하여 네트워크 패킷 내에서 공격형태를 패턴화하여 자동으로 탐지 패턴을 추출하는 방법을 제안한다.
시장예측 문제를 해결하기 위하여 과거부터 꾸준한 연구가 진행되어왔다. 하지만 금융 시계열 데이터에는 분산이 일정하지 않으며 Non-stationarity 등 예측을 하는 것에 있어서 여러 가지 방해 요인이 존재한다. 또한 광범위한 데이터 변수는 기존에 사람이 직접 경험적으로 선택하는 것에 한계가 있기 때문에, 모델이 변수를 자동으로 추출할 수 있어야 한다. 본 논문에서는 여러 가지 금융 시계열 데이터의 문제를 고려하여 타임 스텝 정규화를 제안하며 자동 변수 추출을 위해 LSTM 형태의 오토 인코더 모델을 학습하였으며 LSTM 네트워크를 이용하여 시장 예측하는 모델을 제안한다. 해당 시스템은 실제 주식 거래나 시장 거래를 위하여 온라인 학습이 가능하며 긴 기간을 테스트 구간으로 실험한 결과 미래의 수익률을 예측하는 것에 있어서 우수한 성능을 보였다.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.28
no.4
/
pp.421-430
/
2010
Image segmentation technique is becoming increasingly important in the field of remote sensing image analysis in areas such as object oriented image classification to extract object regions of interest within images. This paper presents a new method for image segmentation in High Resolution Remote Sensing Image based on Improved Seeded Region Growing (ISRG) and Region merging. Firstly, multi-spectral edge detection was done using an entropy operator in pan-sharpened QuickBird imagery. Then, the initial seeds were automatically selected from the obtained multi-spectral edge map. After automatic selection of significant seeds, an initial segmentation was achieved by applying ISRG to consider spectral and edge information. Finally the region merging process, integrating region texture and spectral information, was carried out to get the final segmentation result. The accuracy assesment was done using the unsupervised objective evaluation method for evaluating the effectiveness of the proposed method. Experimental results demonstrated that the proposed method has good potential for application in the segmentation of high resolution satellite images.
현재 필자가 소속하고 있는 연구실에서는, 컴퓨터 아니메이숀, 컴퓨터 그래픽, 화상처리, 인공지능에 관한 연구등을 하고 있다. 본고에서는 화상처리에 관한 연구중에서, 본 연구실에서 최근에 발표한 컴퓨터 비죤에 관계있는 각종의 도로 정보처리에 관한 연구에 대해서 소개한다. 우선, 화상처리의 수법을 이용한 자동조종의 연구로서, 고속도로에서의 선행차의 자동동정에 관한 연구와 하프변환을 이용한 차량번호판 추출에 관한 연구에 대해서 소개한다. 다음에 도로망 지도처리에 관한 연구로서, 차재형 자동항법 시스템의 개요에 관한 소개와 최단시간 경로에 관한 연구, 도로지도의 자동판독에 관한 연구에 대해서 소개한다. 가까운 미래에, 점점 자동차의 자동화가 추진되고, 인공위성을 이용해서 자동차의 현재 위치를 정확하게 파악할 수 있게 되면, 본고에서 소개하는 연구들이 보다 중요한 의미를 가지게 되리라 생각한다.
Proceedings of the Korean Information Science Society Conference
/
2003.04c
/
pp.241-243
/
2003
일반적으로 사용되는 반도체 공정에 대한 진단 기법은 한 공정을 진행하기 전에 테스트 공정을 수행하여 공정의 진행 여부를 결정하고, 한 공정의 진행을 완료한 후에 다시 테스트 공정을 수행하여 공정의 결과를 진단하는 방법이다. 본 논문에서 제안하는 실시간 자동 진단 시스템은 기존 방법의 문제점인 자원의 낭비를 막고, 실시간으로 진단함으로써 시간의 낭비를 막는 진단 시스템을 제안한다. 실시간 자동 진단 시스템은 크게 시스템 초기화 단계, 학습 단계 그리고 예측 단계로 나누어진다. 초기화 단계는 진단할 공정에 대한 사전 입력값을 받아 시스템을 초기화하는 과정으로 공정장비 파라미터별 중요도 자동 설정 과정과 초기화 클러스터링으로 이루어진다. 학습 단계는 실시간으로 저장된 공정장치별 데이터와 계측기로부터 획득된 데이터를 이용하여 최적의 유사 클래스를 결정하는 단계와 결정된 유사 클래스를 이용하여 가중치를 학습하는 단계로 나누어진다. 예측 단계는 공정 진행 중 획득된 실시간 데이터를 학습 단계에서 결정된 파라미터별 가중치를 사용하여 공정에 대한 진단을 한다. 본 시스템에서 사용하는 클러스터링 알고리즘은 DTW(Dynamic Time Warping)를 이용하여 파라미터 데이터에 대한 특징을 추출하고 LBG(Linde, Buzo and Gray) 알고리즘을 사용하여 데이터를 군집화 한다.
The Transactions of the Korea Information Processing Society
/
v.5
no.6
/
pp.1552-1562
/
1998
형태소 분석(Morphological Analysis)과 같은 언어학적 처리에 의존하는 기존의 한국어 문헌에 대한 자동색인 기법들은 품사의 애매모호함이나 복합명사의 처리 등으로 부담(overhead)이 크다. 또한 불용어 처리에 사용되는 불용어 리스트가 대상 문헌의 주제 분야별로 따로 구축되어야 하며 그 크기가 방대하다는 문제점이 있다. 이러한 문제점들을 해결하기 위해, 본 논문에서는 각 문헌의 텍스트에 대해 복합명사 처리나 애매모호함에 대한 엄격한 분석을 수행하지 않는 간단한 형태의 형태소 분석을 수행하여 단순명사들을 추출한다. 그런 후 이들 단순명사들을 이용하여 유한 오토마타(Finite Automata)를 구성하고, 구성된 유한 오토마타와 각 명사의 단어빈도(Term Frequency)에 의해 각 색인어 후보들의 중요도를 계산하는 자동색인 기법을 제안한다. 그 결과 품사의 애매모호함에 대한 처리나 복합명사의 처리에따른 부담을 줄일 수 있었으며, 선정된 색인어들과 수작업으로 선정한 색인어들의 비교 실험에 의해 제안한 자동색인 기법의 성능을 검증하였다.
인터넷과 E-mail 의 사용자가 증가하게 되면서 대량의 메일을 송수신하는 경우, 메일에 대한 효율적 관리의 문제와 불필요한 메일에 대한 관리의 중요성이 부각되고 있다. 본 논문에서는 -mail 시스템의 첨부파일 형식별 자동분류 에이전트는 메일의 내용을 읽어 Keyword 를 검색, 추출한 뒤 불필요한 메일로 판단되는 경우 자동삭제 시키고 그렇지 않은 경우 카테고리별로 폴더를 생성하여 첨부파일 들을 형식별로 분류 시켜주는 E-mail 시스템의 첨부파일 형식별 자동분류 에이전트를 제안하였다. 수신된 메일을 일일이 확인하고 분류해야만 했던 기존의 시스템과는 달리 본 논문에서 제안하고자 하는 시스템을 이용했을 경우 노력과 시간을 절감하고 불필요한 메일에 의한 저장공간의 낭비감소와 첨부파일을 효과적으로 관리할 수 있다는 장점이 있다.
Proceedings of the Korean Society of Disaster Information Conference
/
2022.10a
/
pp.347-348
/
2022
본 연구에서는 무인이동체를 활용한 철도교량의 외관조사 점검을 보다 효율적이고 객관성 있게 수행하기 위하여 무인이동체를 통해 촬영된 이미지를 딥러닝 기반 분석기술을 활용하여 손상 자동으로 분석 하기위한 기술을 연구하였다. 철도교량의 외관 손상 중 균열, 콘크리트 박리·박락, 누수, 철근노출에 대한 손상 이미지를 추출하여 딥러닝 분석 모델을 생성하고 학습한 분석 모델을 적용한 시스템을 실제 현장에 적용 테스트를 수행하였으며 학습 구현된 분석모델의 검측 재현율을 검토한 결과 평균 95%이상의 감지성능을 검토할 수 있었다. 개발 제안된 자동손상분석 기술은 기존 육안점검 결과 대비 보다 객관적이고 정밀한 손상 검측이 가능하며 철도 유지관리 분야에서 무인이동체를 활용한 외관조사 업무를 수행함에 있어 기존 대비 객관적인 결과도출과 소요시간, 비용저감이 가능할 것으로 기대된다.
Purpose: The purpose of this study is to automatically extract information on underground facilities using a general-purpose smartphone in the process of applying the mini-trenching method. Method: Data sets for image learning were collected under various conditions such as day and night, height, and angle, and the object detection algorithm used the R-CNN algorithm. Result: As a result of the study, F1-Score was applied as a performance evaluation index that can consider the average of accurate predictions and reproduction rates at the same time, and F1-Score was 0.76. Conclusion: The results of this study showed that it was possible to extract information on underground buried materials based on smartphones, but it is necessary to improve the precision and accuracy of the algorithm through additional securing of learning data and on-site demonstration.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.