• Title/Summary/Keyword: 자동정보 추출

Search Result 1,995, Processing Time 0.034 seconds

Development of Data Profiling Software Supporting a Microservice Architecture (마이크로 서비스 아키텍처를 지원하는 데이터 프로파일링 소프트웨어의 개발)

  • Chang, Jae-Young;Kim, Jihoon;Jee, Seowoo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.5
    • /
    • pp.127-134
    • /
    • 2021
  • Recently, acquisition of high quality data has become an important issue as the expansion of the big data industry. In order to acquiring high quality data, accurate evaluation of data quality should be preceded first. The quality of data can be evaluated through meta-information such as statistics on data, and the task to extract such meta-information is called data profiling. Until now, data profiling software has typically been provided as a component or an additional service of traditional data quality or visualization tools. Hence, it was not suitable for utilizing directly in various environments. To address this problem, this paper presents the development result of data profiling software based on a microservice architecture that can be serviced in various environments. The presented data profiler provides an easy-to-use interface that requests of meta-information can be serviced through the restful API. Also, a proposed data profiler is independent of a specific environment, thus can be integrated efficiently with the various big data platforms or data analysis tools.

A Virtual Battlefield Situation Dataset Generation for Battlefield Analysis based on Artificial Intelligence

  • Cho, Eunji;Jin, Soyeon;Shin, Yukyung;Lee, Woosin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.6
    • /
    • pp.33-42
    • /
    • 2022
  • In the existing intelligent command control system study, the analysis results of the commander's battlefield situation questions are provided from knowledge-based situation data. Analysis reporters write these results in various expressions of natural language. However, it is important to analyze situations about information and intelligence according to context. Analyzing the battlefield situation using artificial intelligence is necessary. We propose a virtual dataset generation method based on battlefield simulation scenarios in order to provide a dataset necessary for the battlefield situation analysis based on artificial intelligence. Dataset is generated after identifying battlefield knowledge elements in scenarios. When a candidate hypothesis is created, a unit hypothesis is automatically created. By combining unit hypotheses, similar identification hypothesis combinations are generated. An aggregation hypothesis is generated by grouping candidate hypotheses. Dataset generator SW implementation demonstrates that the proposed method can be generated the virtual battlefield situation dataset.

A Study on Construction Method of AI based Situation Analysis Dataset for Battlefield Awareness

  • Yukyung Shin;Soyeon Jin;Jongchul Ahn
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.37-53
    • /
    • 2023
  • The AI based intelligent command and control system can automatically analyzes the properties of intricate battlefield information and tactical data. In addition, commanders can receive situation analysis results and battlefield awareness through the system to support decision-making. It is necessary to build a battlefield situation analysis dataset similar to the actual battlefield situation for learning AI in order to provide decision-making support to commanders. In this paper, we explain the next step of the dataset construction method of the existing previous research, 'A Virtual Battlefield Situation Dataset Generation for Battlefield Analysis based on Artificial Intelligence'. We proposed a method to build the dataset required for the final battlefield situation analysis results to support the commander's decision-making and recognize the future battlefield. We developed 'Dataset Generator SW', a software tool to build a learning dataset for battlefield situation analysis, and used the SW tool to perform data labeling. The constructed dataset was input into the Siamese Network model. Then, the output results were inferred to verify the dataset construction method using a post-processing ranking algorithm.

Based on MQTT and Node-RED Implementation of a Smart Farm System that stores MongoDB (MQTT와 Node-RED를 기반한 MongoDB로 저장 하는 스마트 팜 시스템 구현)

  • Hong-Jin Park
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.5
    • /
    • pp.256-264
    • /
    • 2023
  • Smart farm technology using IoT is one of the technologies that can increase productivity and improve the quality of agricultural products in agriculture, which is facing difficulties due to the decline in rural population, lack of rural manpower due to aging, and increase in diseases and pests due to climate change. . Smart farms using existing IoT simply monitor farms, implement smart plant growers, and have automatic greenhouse opening and closing systems. This paper implements a smart farm system based on MQTT, an industry standard protocol for the Internet of Things, and Node-RED, a representative development middleware for the Internet of Things. First, data is extracted from Arduino sensors, and data is collected and transmitted from IoT devices using the MQTT protocol. Then, Node-RED is used to process MQTT messages and store the sensing data in real time in MongoDB, a representative NoSQL, to store the data. Through this smart farm system, farm managers can use a computer or mobile phone to check sensing information on the smart farm in real time, anytime, anywhere, without restrictions on time and space.

Adaptive Enhancement of Low-light Video Images Algorithm Based on Visual Perception (시각 감지 기반의 저조도 영상 이미지 적응 보상 증진 알고리즘)

  • Li Yuan;Byung-Won Min
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.2
    • /
    • pp.51-60
    • /
    • 2024
  • Aiming at the problem of low contrast and difficult to recognize video images in low-light environment, we propose an adaptive contrast compensation enhancement algorithm based on human visual perception. First of all, the video image characteristic factors in low-light environment are extracted: AL (average luminance), ABWF (average bandwidth factor), and the mathematical model of human visual CRC(contrast resolution compensation) is established according to the difference of the original image's grayscale/chromaticity level, and the proportion of the three primary colors of the true color is compensated by the integral, respectively. Then, when the degree of compensation is lower than the bright vision precisely distinguishable difference, the compensation threshold is set to linearly compensate the bright vision to the full bandwidth. Finally, the automatic optimization model of the compensation ratio coefficient is established by combining the subjective image quality evaluation and the image characteristic factor. The experimental test results show that the video image adaptive enhancement algorithm has good enhancement effect, good real-time performance, can effectively mine the dark vision information, and can be widely used in different scenes.

Soccer Game Analysis I : Extraction of Soccer Players' ground traces using Image Mosaic (축구 경기 분석 I : 영상 모자익을 통한 축구 선수의 운동장 궤적 추출)

  • Kim, Tae-One;Hong, Ki-Sang
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.1
    • /
    • pp.51-59
    • /
    • 1999
  • In this paper we propose the technique for tracking players and a ball and for obtaining players' ground traces using image mosaic in general soccer sequences. Here, general soccer sequences mean the case that there is no extreme zoom-in or zoom-out of TV camera. Obtaining player's ground traces requires that the following three main problems be solved. There main problems: (1) ground field extraction (2) player and ball tracking and team indentification (3) player positioning. The region of ground field is extracted on the basis of color information. Players are tracked by template matching and Kalman filtering. Occlusion reasoning between overlapped players in done by color histogram back-projection. To find the location of a player, a ground model is constructed and transformation between the input images and the field model is computed using four or more feature points. But, when feature points extracted are insufficient, image-based mosaic technique is applied. By this image-to-model transformation, the traces of players on the ground model can be determined. We tested our method on real TV soccer sequence and the experimental results are given.

  • PDF

Automatic Generation of Clustered Solid Building Models Based on Point Cloud (포인트 클라우드 데이터 기반 군집형 솔리드 건물 모델 자동 생성 기법)

  • Kim, Han-gyeol;Hwang, YunHyuk;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1349-1365
    • /
    • 2020
  • In recent years, in the fields of smart cities and digital twins, research on model generation is increasing due to the advantage of acquiring actual 3D coordinates by using point clouds. In addition, there is an increasing demand for a solid model that can easily modify the shape and texture of the building. In this paper, we propose a method to create a clustered solid building model based on point cloud data. The proposed method consists of five steps. Accordingly, in this paper, we propose a method to create a clustered solid building model based on point cloud data. The proposed method consists of five steps. In the first step, the ground points were removed through the planarity analysis of the point cloud. In the second step, building area was extracted from the ground removed point cloud. In the third step, detailed structural area of the buildings was extracted. In the fourth step, the shape of 3D building models with 3D coordinate information added to the extracted area was created. In the last step, a 3D building solid model was created by giving texture to the building model shape. In order to verify the proposed method, we experimented using point clouds extracted from unmanned aerial vehicle images using commercial software. As a result, 3D building shapes with a position error of about 1m compared to the point cloud was created for all buildings with a certain height or higher. In addition, it was confirmed that 3D models on which texturing was performed having a resolution of less than twice the resolution of the original image was generated.

Automatic Text Extraction from News Video using Morphology and Text Shape (형태학과 문자의 모양을 이용한 뉴스 비디오에서의 자동 문자 추출)

  • Jang, In-Young;Ko, Byoung-Chul;Kim, Kil-Cheon;Byun, Hye-Ran
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.4
    • /
    • pp.479-488
    • /
    • 2002
  • In recent years the amount of digital video used has risen dramatically to keep pace with the increasing use of the Internet and consequently an automated method is needed for indexing digital video databases. Textual information, both superimposed and embedded scene texts, appearing in a digital video can be a crucial clue for helping the video indexing. In this paper, a new method is presented to extract both superimposed and embedded scene texts in a freeze-frame of news video. The algorithm is summarized in the following three steps. For the first step, a color image is converted into a gray-level image and applies contrast stretching to enhance the contrast of the input image. Then, a modified local adaptive thresholding is applied to the contrast-stretched image. The second step is divided into three processes: eliminating text-like components by applying erosion, dilation, and (OpenClose+CloseOpen)/2 morphological operations, maintaining text components using (OpenClose+CloseOpen)/2 operation with a new Geo-correction method, and subtracting two result images for eliminating false-positive components further. In the third filtering step, the characteristics of each component such as the ratio of the number of pixels in each candidate component to the number of its boundary pixels and the ratio of the minor to the major axis of each bounding box are used. Acceptable results have been obtained using the proposed method on 300 news images with a recognition rate of 93.6%. Also, my method indicates a good performance on all the various kinds of images by adjusting the size of the structuring element.

Realtime Video Visualization based on 3D GIS (3차원 GIS 기반 실시간 비디오 시각화 기술)

  • Yoon, Chang-Rak;Kim, Hak-Cheol;Kim, Kyung-Ok;Hwang, Chi-Jung
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.1
    • /
    • pp.63-70
    • /
    • 2009
  • 3D GIS(Geographic Information System) processes, analyzes and presents various real-world 3D phenomena by building 3D spatial information of real-world terrain, facilities, etc., and working with visualization technique such as VR(Virtual Reality). It can be applied to such areas as urban management system, traffic information system, environment management system, disaster management system, ocean management system, etc,. In this paper, we propose video visualization technology based on 3D geographic information to provide effectively real-time information in 3D geographic information system and also present methods for establishing 3D building information data. The proposed video visualization system can provide real-time video information based on 3D geographic information by projecting real-time video stream from network video camera onto 3D geographic objects and applying texture-mapping of video frames onto terrain, facilities, etc.. In this paper, we developed sem i-automatic DBM(Digital Building Model) building technique using both aerial im age and LiDAR data for 3D Projective Texture Mapping. 3D geographic information system currently provide static visualization information and the proposed method can replace previous static visualization information with real video information. The proposed method can be used in location-based decision-making system by providing real-time visualization information, and moreover, it can be used to provide intelligent context-aware service based on geographic information.

  • PDF

GIS Information Generation for Electric Mobility Aids Based on Object Recognition Model (객체 인식 모델 기반 전동 이동 보조기용 GIS 정보 생성)

  • Je-Seung Woo;Sun-Gi Hong;Dong-Seok Park;Jun-Mo Park
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.4
    • /
    • pp.200-208
    • /
    • 2022
  • In this study, an automatic information collection system and geographic information construction algorithm for the transportation disadvantaged using electric mobility aids are implemented using an object recognition model. Recognizes objects that the disabled person encounters while moving, and acquires coordinate information. It provides an improved route selection map compared to the existing geographic information for the disabled. Data collection consists of a total of four layers including the HW layer. It collects image information and location information, transmits them to the server, recognizes, and extracts data necessary for geographic information generation through the process of classification. A driving experiment is conducted in an actual barrier-free zone, and during this process, it is confirmed how efficiently the algorithm for collecting actual data and generating geographic information is generated.The geographic information processing performance was confirmed to be 70.92 EA/s in the first round, 70.69 EA/s in the second round, and 70.98 EA/s in the third round, with an average of 70.86 EA/s in three experiments, and it took about 4 seconds to be reflected in the actual geographic information. From the experimental results, it was confirmed that the walking weak using electric mobility aids can drive safely using new geographic information provided faster than now.