• Title/Summary/Keyword: 자동정보 추출

Search Result 1,995, Processing Time 0.025 seconds

Goods Recommendation Sysrem using a Customer’s Preference Features Information (고객의 선호 특성 정보를 이용한 상품 추천 시스템)

  • Sung, Kyung-Sang;Park, Yeon-Chool;Ahn, Jae-Myung;Oh, Hae-Seok
    • The KIPS Transactions:PartD
    • /
    • v.11D no.5
    • /
    • pp.1205-1212
    • /
    • 2004
  • As electronic commerce systems have been widely used, the necessity of adaptive e-commerce agent systems has been increased. These kinds of adaptive e-commerce agents can monitor customer's behaviors and cluster thou in similar categories, and include user's preference from each category. In order to implement our adaptive e-commerce agent system, in this paper, we propose an adaptive e-commerce agent systems consider customer's information of interest and goodwill ratio about preference goods. Proposed system build user's profile more accurately to get adaptability for user's behavior of buying and provide useful product information without inefficient searching based on such user's profile. The proposed system composed with three parts , Monitor Agent which grasps user's intension using monitoring, similarity reference Agent which refers to similar group of behavior pattern after teamed behavior pattern of user, Interest Analyzing Agent which personalized behavior DB as a change of user's behavior.

Design and Implementation of Topic Map Generation System based Tag (태그 기반 토픽맵 생성 시스템의 설계 및 구현)

  • Lee, Si-Hwa;Lee, Man-Hyoung;Hwang, Dae-Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.5
    • /
    • pp.730-739
    • /
    • 2010
  • One of core technology in Web 2.0 is tagging, which is applied to multimedia data such as web document of blog, image and video etc widely. But unlike expectation that the tags will be reused in information retrieval and then maximize the retrieval efficiency, unacceptable retrieval results appear owing to toot limitation of tag. In this paper, in the base of preceding research about image retrieval through tag clustering, we design and implement a topic map generation system which is a semantic knowledge system. Finally, tag information in cluster were generated automatically with topics of topic map. The generated topics of topic map are endowed with mean relationship by use of WordNet. Also the topics are endowed with occurrence information suitable for topic pair, and then a topic map with semantic knowledge system can be generated. As the result, the topic map preposed in this paper can be used in not only user's information retrieval demand with semantic navigation but alse convenient and abundant information service.

Automatic Visual Architecture Generation System for Efficient HDL Debugging (효율적인 HDL 디버깅을 위한 아키텍쳐 자동 생성 시스템)

  • Moon, Dai-Tchul;Cheng, Xie;Park, In-Hag
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.7
    • /
    • pp.1653-1659
    • /
    • 2013
  • In this paper, we propose a new ECAD software for efficiently analyzing and debugging of digital architecture implemented in Verilog HDL or VHDL codes. This software firstly elaborates HDL codes so as to extract internal architecture structure, then generates several graphical aids such as hierarchical schematics by applying placement and routing algorithm, object tree to show configuration of each module, instance tree to show hierarchical structure of instances, and SPD (Signal Propagation Diagram) to show internal interconnections. It is more important function that same objects in different views(HDL codes, object tree, instance tree, SPD, waveform etc.) can be highlighted at the starting any object. These functions are sure to improve efficiency of manual job to fix bugs or to analyze HDL codes.

An Effective Incremental Text Clustering Method for the Large Document Database (대용량 문서 데이터베이스를 위한 효율적인 점진적 문서 클러스터링 기법)

  • Kang, Dong-Hyuk;Joo, Kil-Hong;Lee, Won-Suk
    • The KIPS Transactions:PartD
    • /
    • v.10D no.1
    • /
    • pp.57-66
    • /
    • 2003
  • With the development of the internet and computer, the amount of information through the internet is increasing rapidly and it is managed in document form. For this reason, the research into the method to manage for a large amount of document in an effective way is necessary. The document clustering is integrated documents to subject by classifying a set of documents through their similarity among them. Accordingly, the document clustering can be used in exploring and searching a document and it can increased accuracy of search. This paper proposes an efficient incremental cluttering method for a set of documents increase gradually. The incremental document clustering algorithm assigns a set of new documents to the legacy clusters which have been identified in advance. In addition, to improve the correctness of the clustering, removing the stop words can be proposed and the weight of the word can be calculated by the proposed TF$\times$NIDF function.

The Unsupervised Learning-based Language Modeling of Word Comprehension in Korean

  • Kim, Euhee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.11
    • /
    • pp.41-49
    • /
    • 2019
  • We are to build an unsupervised machine learning-based language model which can estimate the amount of information that are in need to process words consisting of subword-level morphemes and syllables. We are then to investigate whether the reading times of words reflecting their morphemic and syllabic structures are predicted by an information-theoretic measure such as surprisal. Specifically, the proposed Morfessor-based unsupervised machine learning model is first to be trained on the large dataset of sentences on Sejong Corpus and is then to be applied to estimate the information-theoretic measure on each word in the test data of Korean words. The reading times of the words in the test data are to be recruited from Korean Lexicon Project (KLP) Database. A comparison between the information-theoretic measures of the words in point and the corresponding reading times by using a linear mixed effect model reveals a reliable correlation between surprisal and reading time. We conclude that surprisal is positively related to the processing effort (i.e. reading time), confirming the surprisal hypothesis.

Automated Development of Rank-Based Concept Hierarchical Structures using Wikipedia Links (위키피디아 링크를 이용한 랭크 기반 개념 계층구조의 자동 구축)

  • Lee, Ga-hee;Kim, Han-joon
    • The Journal of Society for e-Business Studies
    • /
    • v.20 no.4
    • /
    • pp.61-76
    • /
    • 2015
  • In general, we have utilized the hierarchical concept tree as a crucial data structure for indexing huge amount of textual data. This paper proposes a generality rank-based method that can automatically develop hierarchical concept structures with the Wikipedia data. The goal of the method is to regard each of Wikipedia articles as a concept and to generate hierarchical relationships among concepts. In order to estimate the generality of concepts, we have devised a special ranking function that mainly uses the number of hyperlinks among Wikipedia articles. The ranking function is effectively used for computing the probabilistic subsumption among concepts, which allows to generate relatively more stable hierarchical structures. Eventually, a set of concept pairs with hierarchical relationship is visualized as a DAG (directed acyclic graph). Through the empirical analysis using the concept hierarchy of Open Directory Project, we proved that the proposed method outperforms a representative baseline method and it can automatically extract concept hierarchies with high accuracy.

Pattern and Instance Generation for Self-knowledge Learning in Korean (한국어 자가 지식 학습을 위한 패턴 및 인스턴스 생성)

  • Yoon, Hee-Geun;Park, Seong-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.1
    • /
    • pp.63-69
    • /
    • 2015
  • There are various researches which proposed an automatic instance generation from freetext on the web. Existing researches that focused on English, adopts pattern representation which is generated by simple rules and regular expression. These simple patterns achieves high performance, but it is not suitable in Korean due to differences of characteristics between Korean and English. Thus, this paper proposes a novel method for generating patterns and instances which focuses on Korean. A proposed method generates high quality patterns by taking advantages of dependency relations in a target sentences. In addition, a proposed method overcome restrictions from high degree of freedom of word order in Korean by utilizing postposition and it identifies a subject and an object more reliably. In experiment results, a proposed method shows higher precision than baseline and it is implies that proposed approache is suitable for self-knowledge learning system.

Automatic Segmentation of Renal Parenchyma using Graph-cuts with Shape Constraint based on Multi-probabilistic Atlas in Abdominal CT Images (복부 컴퓨터 단층촬영영상에서 다중 확률 아틀라스 기반 형상제한 그래프-컷을 사용한 신실질 자동 분할)

  • Lee, Jaeseon;Hong, Helen;Rha, Koon Ho
    • Journal of the Korea Computer Graphics Society
    • /
    • v.22 no.4
    • /
    • pp.11-19
    • /
    • 2016
  • In this paper, we propose an automatic segmentation method of renal parenchyma on abdominal CT image using graph-cuts with shape constraint based on multi-probabilistic atlas. The proposed method consists of following three steps. First, to use the various shape information of renal parenchyma, multi-probabilistic atlas is generated by cortex-based similarity registration. Second, initial seeds for graph-cuts are extracted by maximum a posteriori (MAP) estimation and renal parenchyma is segmented by graph-cuts with shape constraint. Third, to reduce alignment error of probabilistic atlas and increase segmentation accuracy, registration and segmentation are iteratively performed. To evaluate the performance of proposed method, qualitative and quantitative evaluation are performed. Experimental results show that the proposed method avoids a leakage into neighbor regions with similar intensity of renal parenchyma and shows improved segmentation accuracy.

Automatic Leather Quality Inspection and Grading System by Leather Texture Analysis (텍스쳐 분석에 의한 피혁 등급 판정 및 자동 선별시스템에의 응용)

  • 권장우;김명재;길경석
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.4
    • /
    • pp.451-458
    • /
    • 2004
  • A leather quality inspection by naked eyes has known as unreliable because of its biological characteristics like accumulated fatigue caused from an optical illusion and biological phenomenon. Therefore it is necessary to automate the leather quality inspection by computer vision technique. In this paper, we present automatic leather qua1ity classification system get information from leather surface. Leather is usually graded by its information such as texture density, types and distribution of defects. The presented algorithm explain how we analyze leather information like texture density and defects from the gray-level images obtained by digital camera. The density data is computed by its ratio of distribution area, width, and height of Fourier spectrum magnitude. And the defect information of leather surface can be obtained by histogram distribution of pixels which is Windowed from preprocessed images. The information for entire leather could be a standard for grading leather quality. The proposed leather inspection system using machine vision can also be applied to another field to substitute human eye inspection.

  • PDF

Study of Traffic Sign Auto-Recognition (교통 표지판 자동 인식에 관한 연구)

  • Kwon, Mann-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5446-5451
    • /
    • 2014
  • Because there are some mistakes by hand in processing electronic maps using a navigation terminal, this paper proposes an automatic offline recognition for traffic signs, which are considered ingredient navigation information. Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA), which have been used widely in the field of 2D face recognition as computer vision and pattern recognition applications, was used to recognize traffic signs. First, using PCA, a high-dimensional 2D image data was projected to a low-dimensional feature vector. The LDA maximized the between scatter matrix and minimized the within scatter matrix using the low-dimensional feature vector obtained from PCA. The extracted traffic signs under a real-world road environment were recognized successfully with a 92.3% recognition rate using the 40 feature vectors created by the proposed algorithm.