• Title/Summary/Keyword: 자동정보 추출

Search Result 1,995, Processing Time 0.035 seconds

Multiple Cause Model-based Topic Extraction and Semantic Kernel Construction from Text Documents (다중요인모델에 기반한 텍스트 문서에서의 토픽 추출 및 의미 커널 구축)

  • 장정호;장병탁
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.5
    • /
    • pp.595-604
    • /
    • 2004
  • Automatic analysis of concepts or semantic relations from text documents enables not only an efficient acquisition of relevant information, but also a comparison of documents in the concept level. We present a multiple cause model-based approach to text analysis, where latent topics are automatically extracted from document sets and similarity between documents is measured by semantic kernels constructed from the extracted topics. In our approach, a document is assumed to be generated by various combinations of underlying topics. A topic is defined by a set of words that are related to the same topic or cooccur frequently within a document. In a network representing a multiple-cause model, each topic is identified by a group of words having high connection weights from a latent node. In order to facilitate teaming and inferences in multiple-cause models, some approximation methods are required and we utilize an approximation by Helmholtz machines. In an experiment on TDT-2 data set, we extract sets of meaningful words where each set contains some theme-specific terms. Using semantic kernels constructed from latent topics extracted by multiple cause models, we also achieve significant improvements over the basic vector space model in terms of retrieval effectiveness.

Extraction of Agricultural Land Use and Crop Growth Information using KOMPSAT-3 Resolution Satellite Image (KOMPSAT-3급 위성영상을 이용한 농업 토지이용 및 작물 생육정보 추출)

  • Lee, Mi-Seon;Kim, Seong-Joon;Shin, Hyoung-Sub;Park, Jin-Ki;Park, Jong-Hwa
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.5
    • /
    • pp.411-421
    • /
    • 2009
  • This study refers to develop a semi-automatic extraction of agricultural land use and vegetation information using high resolution satellite images. Data of IKONOS-2 satellite images (May 25 of 2001, December 25 of 2001, and October 23 of 2003), QuickBird-2 satellite images (May 1 of 2006 and November 17 of 2004) and KOMPSAT-2 satellite image (September 17 of 2007) which resemble with the spatial resolution and spectral characteristics of KOMPSAT-3 were used. The precise agricultural land use classification was tried using ISODATA unsupervised classification technique, and the result was compared with on-screen digitizing land use accompanying with field investigation. For the extraction of crop growth information, three crops of paddy, com and red pepper were selected, and the spectral characteristics were collected during each growing period using ground spectroradiometer. The vegetation indices viz. RVI, NDVI, ARVI, and SAVI for the crops were evaluated. The evaluation process was developed using the ERDAS IMAGINE Spatial Modeler Tool.

Automation of Information Extraction from IFC-BIM for Indoor Air Quality Certification (IFC-BIM을 활용한 실내공기질 인증 요구정보 생성 자동화)

  • Hong, Simheee;Yeo, Changjae;Yu, Jungho
    • Korean Journal of Construction Engineering and Management
    • /
    • v.18 no.3
    • /
    • pp.63-73
    • /
    • 2017
  • In contemporary society, it is increasingly common to spend more time indoors. As such, there is a continually growing desire to build comfortable and safe indoor environments. Along with this trend, however, there are some serious indoor-environment challenges, such as the quality of indoor air and Sick House Syndrome. To address these concerns the government implements various systems to supervise and manage indoor environments. For example, green building certification is now compulsory for public buildings. There are three categories of green building certification related to indoor air in Korea: Health-Friendly Housing Construction Standards, Green Standard for Energy & Environmental Design(G-SEED), and Indoor Air Certification. The first two types of certification, Health-Friendly Housing Construction Standards and G-SEED, evaluate data in a drawing plan. In comparison, the Indoor Air Certification evaluates measured data. The certification using data from a drawing requires a considerable amount of time compared to other work. A 2D tool needs to be employed to measure the area manually. Thus, this study proposes an automatic assessment process using a Building Information Modeling(BIM) model based on 3D data. This process, using open source Industry Foundation Classes(IFC), exports data for the certification system, and extracts the data to create an Excel sheet for the certification. This is expected to improve the work process and reduce the workload associated with evaluating indoor air conditions.

A PageRank based Data Indexing Method for Designing Natural Language Interface to CRM Databases (분석 CRM 실무자의 자연어 질의 처리를 위한 기업 데이터베이스 구성요소 인덱싱 방법론)

  • Park, Sung-Hyuk;Hwang, Kyeong-Seo;Lee, Dong-Won
    • CRM연구
    • /
    • v.2 no.2
    • /
    • pp.53-70
    • /
    • 2009
  • Understanding consumer behavior based on the analysis of the customer data is one essential part of analytic CRM. To do this, the analytic skills for data extraction and data processing are required to users. As a user has various kinds of questions for the consumer data analysis, the user should use database language such as SQL. However, for the firm's user, to generate SQL statements is not easy because the accuracy of the query result is hugely influenced by the knowledge of work-site operation and the firm's database. This paper proposes a natural language based database search framework finding relevant database elements. Specifically, we describe how our TableRank method can understand the user's natural query language and provide proper relations and attributes of data records to the user. Through several experiments, it is supported that the TableRank provides accurate database elements related to the user's natural query. We also show that the close distance among relations in the database represents the high data connectivity which guarantees matching with a search query from a user.

  • PDF

Segmentation Foundation Model-based Automated Yard Management Algorithm (의미론적 분할 기반 모델을 이용한 조선소 사외 적치장 객체 자동 관리 기술)

  • Mingyu Jeong;Jeonghyun Noh;Janghyun Kim;Seongheon Ha;Taeseon Kang;Byounghak Lee;Kiryong Kang;Junhyeon Kim;Jinsun Park
    • Smart Media Journal
    • /
    • v.13 no.2
    • /
    • pp.52-61
    • /
    • 2024
  • In the shipyard, aerial images are acquired at regular intervals using Unmanned Aerial Vehicles (UAVs) for the management of external storage yards. These images are then investigated by humans to manage the status of the storage yards. This method requires a significant amount of time and manpower especially for large areas. In this paper, we propose an automated management technology based on a semantic segmentation foundation model to address these challenges and accurately assess the status of external storage yards. In addition, as there is insufficient publicly available dataset for external storage yards, we collected a small-scale dataset for external storage yards objects and equipment. Using this dataset, we fine-tune an object detector and extract initial object candidates. They are utilized as prompts for the Segment Anything Model(SAM) to obtain precise semantic segmentation results. Furthermore, to facilitate continuous storage yards dataset collection, we propose a training data generation pipeline using SAM. Our proposed method has achieved 4.00%p higher performance compared to those of previous semantic segmentation methods on average. Specifically, our method has achieved 5.08% higher performance than that of SegFormer.

Computer-Aided Diagnosis of Splenic Enlargement Using Wave Pattern of Spleen in Abdominal CT Images (복부 CT 영상에서 비장의 웨이브 형태를 이용한 비장 비대의 자동 진단)

  • Seong Won;Park Jong-Won
    • The KIPS Transactions:PartB
    • /
    • v.12B no.5 s.101
    • /
    • pp.553-560
    • /
    • 2005
  • Generally, it is known that the spleen accompanied by liver cirrhosis is hypertrophied or enlarged. We examined the wave pattern of the spleen by using abdominal CT images of a patient with liver cirrhosis, and found that they are different from those of a person with a normal liver In the abdominal CT image of the patient with liver cirrhosis, there is a deep wave part on the left side of the spleen. In the case of the normal liver, there are waves on the left side, but they aren't deep. Therefore, the total area of waving parts of the spleen with liver cirrhosis is found to be greater than that of the spleen with the normal liver. Moreover, when examining circularity by abstracting the waves of the spleen from the image iO liver cirrhosis, we found they are more circular than those of the spleen accompanied by a normal liver. This paper suggests an automatic method to diagnose splenic enlargement by using the wave pattern of the spleen in abdominal CT images on the basis of the two principles. It tells us that we can judge if the abdomen has a focal splenic enlargement automatically, without the manual test of the size of spleen, only with the shape of spleen.

Development of a Spectrum Analysis Software for Multipurpose Gamma-ray Detectors (감마선 검출기를 위한 스펙트럼 분석 소프트웨어 개발)

  • Lee, Jong-Myung;Kim, Young-Kwon;Park, Kil-Soon;Kim, Jung-Min;Lee, Ki-Sung;Joung, Jin-Hun
    • Journal of radiological science and technology
    • /
    • v.33 no.1
    • /
    • pp.51-59
    • /
    • 2010
  • We developed an analysis software that automatically detects incoming isotopes for multi-purpose gamma-ray detectors. The software is divided into three major parts; Network Interface Module (NIM), Spectrum Analysis Module (SAM), and Graphic User Interface Module (GUIM). The main part is SAM that extracts peak information of energy spectrum from the collected data through network and identifies the isotopes by comparing the peaks with pre-calibrated libraries. The proposed peak detection algorithm was utilized to construct libraries of standard isotopes with two peaks and to identify the unknown isotope with the constructed libraries. We tested the software by using GammaPro1410 detector developed by NuCare Medical Systems. The results showed that NIM performed 200K counts per seconds and the most isotopes tested were correctly recognized within 1% error range when only a single unknown isotope was used for detection test. The software is expected to be used for radiation monitoring in various applications such as hospitals, power plants, and research facilities etc.

Computer-Aided Diagnosis of Liver Cirrhosis using Wave Pattern of Spleen in Abdominal CT Imaging (복부 CT영상에서 비장의 웨이브 패턴을 이용한 간경변의 자동 진단)

  • Seong Won;Cho June-Sik;Noh Seung-Moo;Park Jong-Won
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.6
    • /
    • pp.532-541
    • /
    • 2005
  • We examined the wave pattern of the spleen by using abdominal CT images of a patient with liver cirrhosis, and found that they are different from those of a person with a normal liver. In the abdominal CT image of the patient with liver cirrhosis, there is a deep wave part on the left side of the spleen. In the case of the normal liver, there are waves on the left side, but they aren't deep. Therefore, the total area of waving parts of the spleen with liver cirrhosis is found to be greater than that of the spleen with the normal liver. Moreover, when examining circularity by abstracting the waves of the spleen from the image with liver cirrhosis, we found they are more circular than those of the spleen accompanied by a normal liver. This paper suggests an automatic method to diagnose liver cirrhosis by using the wave pattern of the spleen in abdominal CT images on the basis of the two principles. It tells us that we can judge if the liver has liver cirrhosis automatically, without the manual test of the ratio of caudate lobe to right lobe, only with the spleen.

A Question Example Generation System for Multiple Choice Tests by utilizing Concept Similarity in Korean WordNet (한국어 워드넷에서의 개념 유사도를 활용한 선택형 문항 생성 시스템)

  • Kim, Young-Bum;Kim, Yu-Seop
    • The KIPS Transactions:PartA
    • /
    • v.15A no.2
    • /
    • pp.125-134
    • /
    • 2008
  • We implemented a system being able to suggest example sentences for multiple choice tests, considering the level of students. To build the system, we designed an automatic method for sentence generation, which made it possible to control the difficulty degree of questions. For the proper evaluation in the multiple choice tests, proper size of question pools is required. To satisfy this requirement, a system which can generate various and numerous questions and their example sentences in a fast way should be used. In this paper, we designed an automatic generation method using a linguistic resource called WordNet. For the automatic generation, firstly, we extracted keywords from the existing sentences with the morphological analysis and candidate terms with similar meaning to the keywords in Korean WordNet space are suggested. When suggesting candidate terms, we transformed the existing Korean WordNet scheme into a new scheme to construct the concept similarity matrix. The similarity degree between concepts can be ranged from 0, representing synonyms relationships, to 9, representing non-connected relationships. By using the degree, we can control the difficulty degree of newly generated questions. We used two methods for evaluating semantic similarity between two concepts. The first one is considering only the distance between two concepts and the second one additionally considers positions of two concepts in the Korean Wordnet space. With these methods, we can build a system which can help the instructors generate new questions and their example sentences with various contents and difficulty degree from existing sentences more easily.

Using a computer color image automatic detection algorithm for gastric cancer (컴퓨터 컬러 영상을 이용한 위암 자동검출 알고리즘)

  • Han, Hyun-Ji;Kim, Young-Mok;Lee, Ki-Young;Lee, Sang-Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.4 no.4
    • /
    • pp.250-257
    • /
    • 2011
  • This experiment present the automatic detection algorithm of gastric cancer that take second place among all cancers. If an inflammation and a cancer are not examined carefully, early ones have difficulty in being diagnosed as illnesses than advanced ones. For diagnosis of gastric cancer, and progressing cancer in this study, present 4 algorithm. research team extracted an abnormal part in stomach through the endoscope image. At first, decide to use shading technique or not in each endoscope image for study. it make easy distinguish to whether tumor is existing or not by putting shading technique in or eliminate it by the color. Second. By passing image subjoin shading technique to erosion filter, eliminate noise and make give attention to diagnose. Third. Analyzing out a line and fillet graph from image adding surface shade and detect RED value according to degree of symptoms. Fourth. By suggesting this algorithm, that making each patient's endscope image into subdivision graph including RED graph value, afterward revers the color, revealing the position of tumor, this study desire to help to diagnosing gastric, other cancer and inflammation.