• Title/Summary/Keyword: 자동정보 추출

Search Result 1,996, Processing Time 0.025 seconds

Automatic Term Recognition using Domain Similarity and Statistical Methods (분야간 유사도와 통계기법을 이용한 전문용어의 자동 추출)

  • Oh, Jong-Hoon;Lee, Kyung-Soon;Choi, Key-Sun
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.4
    • /
    • pp.258-269
    • /
    • 2002
  • There have been many studies of automatic term recognition (ATR) and they have achieved good results. However, there are scopes to improve the performance of extracting terms still further by using the additional technical dictionaries. This paper focuses on the method for extracting terms using the hierarchy among technical dictionaries. Moreover, a statistical method based on frequencies, foreign words, and nested relations assists extracting terms which do not appear in dictionaries. Our method produces relatively good results for this task.

근접 문맥정보와 대규모 웹 데이터를 이용한 단어 의미 중의성 해소

  • Kang, Sin-Jae;Kang, In-Su
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2009.05a
    • /
    • pp.208-211
    • /
    • 2009
  • 본 논문은 구글(Google), 워드넷(WordNet)과 같이 공개된 웹 자원과 리소스를 이용한 비교사학습(Unsupervised learning) 방법을 제안하여 단어 의미의 중의성 문제를 해결하고자 한다. 구글 검색 API를 이용하여 단어의 확장된 근접 문맥정보를 추출하고, 워드넷의 계층체계와 synset을 이용하여 단어 의미 구분정보를 자동 추출한 후, 추출된 정보 간 유사도 계산을 통해 중의성을 갖는 단어의 의미를 결정한다.

  • PDF

An Automatic Classification System for Hanmail Net Questions Using Multiple Neural Networks (다중 신경망을 이용한 한메일넷 질의 자동분류 시스템)

  • 이지행;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.232-234
    • /
    • 2000
  • 최근들어 정보의 양이 날로 방대해 짐에 따라 이를 자동으로 분류해 줄 수 있는 무서 자동분류의 중요성이 널리 인식되고 있다. 문서 자동분류는 새로운 문서를 미리 정의된 부류로 대응시키는 일련의 작업을 말하며, 각종 패턴인식 기법들을 이용하여 시도되고 있다. 본 논문에서는 수많은 사용자들의 질의들을 분류하여 자동으로 응답하는 시스템에 적용할 수 있는 자동 질의 분류시스템을 제안한다. 실험은 500만명 이상이 사용하고 있는 한메일넷의 실제 사용자 질의를 수집하여 수행하였으며, 자동분류 방법으로는 다중 신경망을 이용하였다. 또한 효율적인 특징추출 기법과 결과 결합방법을 적용하여 분류의 정확율을 높이고자 하였다. 2204개의 실제 질의메일에 대한 실험결과, 91.1%까지의 정확율을 얻어 제안한 시스템이 실제 한메일넷의 자동응답 시스템에 효과적으로 적용될 수 있음을 알 수 있었다.

  • PDF

Automatic Classification Technique of Offence Patterns using Neural Networks in Soccer Game (뉴럴네트워크를 이용한 축구경기 공격패턴 자동분류에 관한 연구)

  • Kim, Hyun-Sook;Yoon, Ho-Sub;Hwang, Chong-Sun;Yang, Young-Kyu
    • Annual Conference of KIPS
    • /
    • 2001.10a
    • /
    • pp.727-730
    • /
    • 2001
  • 멀티미디어 환경의 급속한 발전에 의해 영상처리 기술은 인간의 인체와 관련하여 얼굴인식, 제스처 인식에 관한 응용과 더불어 스포츠 관련분야로 깊숙히 정착하고 있다. 그러나 입력영상으로부터 움직이고 있는 선수들의 동작을 추출 및 추적하는 일은 컴퓨터비전 연구의 난 문제 중의 하나로 알려져 있다. 이러한 축구경기의 TV 중계에 있어서 하이라이트 장면의 자동추출(자동색인)은 그 경기의 가장 집약적인 표현이며, 축구경기 전체를 한 눈에 파악할 수 있도록 해주는 요약(summary)이자 intensive actions이고 경기의 진수이다. 따라서 축구경기와 같이 비교적 기 시간(대체로 1시간 30분) 동안 다수의 선수(양 팀 합해서 22명)들이 서로 복잡하게 뒤얽히면서 진행하는 경기의 하이라이트 장면을 효과적으로 포착하여 표현해 줄 수 있다면 TV를 통해서 경기를 관람하는 시청자들에게는 경기의 진행상황을 한 눈에 효과적으로 파악할 수 있게 해주어 흥미진진한 경기관람을 할 수 있게 해주고, 경기의 진행자들(감독, 코치, 선수 등)에게는 고차원적이고 과학적인 정보를 효과적으로 제공함으로써 한층 진보된 경기기법을 개발하고 과학적인 경기전략을 세울 수 있게 해준다. 본 논문은 이상과 같이 팀 스포츠(Team Spots)의 일종인 축구경기 하이라이트 장면의 자동색인을 위해 뉴럴네트워크 기법을 이용하여 그룹 포메이션(Group Formation) 중의 공격패턴 자동분류 기법을 개발하고 이를 검증하였다. 본 연구에서는 축구경기장 내의 빈번하게 변화하는 장면들을 자동으로 분할하여 대표 프레임을 선정하고, 대표 프레임 상에서 선수들의 위치정보와 공의 위치정보 등을 기초로 하여 경기 중에 이루어지는 선수들의 그룹 포메이션을 추적하여 그룹행동(group behavior)을 분석하고, 뉴럴네트워크의 BP(Back-Propagation) 알고리즘을 사용하여 축구경기 공격패턴을 자동으로 인식 및 분류함으로써 축구경기 하이라이트 장면의 자동추출을 위한 기반을 마련하였다. 본 연구의 실험에는 '98 프랑스 월드컵 축구경기의 다양한 공격패턴에 대한 비디오 영상에서 각각 좌측공격 60개, 우측공격 74개, 중앙공격 72개, 코너킥 39개, 프리킥 52개의 총 297개의 데이터를 추출하여 사용하였다. 실험과는 좌측공격 91.7%, 우측공격 100%, 중앙공격 87.5%, 코너킥 97.4%, 프리킥 75%로서 매우 양호한 인식율을 보였다.

  • PDF

The Research on Extraction of Topology Model Using Straight Medial Axis Transformation Algorithm (SMAT 알고리즘을 이용한 위상학적 모델 추출 방법)

  • Park, So-Young;Lee, Ji-Yeong
    • Spatial Information Research
    • /
    • v.20 no.2
    • /
    • pp.117-127
    • /
    • 2012
  • The purpose of this study is to develop the auto-building algorithm of the Geometric Network Model(GNM), a topology model including geometric information because of the need to reflect the features' geometric characteristic into the topology model, which is for development of indoor 3D virtual model enabling queries. As the critical algorithm, the Straight Medial Axis Transformation(SMAT) algorithm is proposed in order to automatically extract the medial axis of features. The SMAT algorithm is generalized from the existing S-MAT algorithm and a range of target features where applicable is extended from simple polygons to weakly simple polygons which mean the polygons containing the inner ring inside. The GNM built automatically is finally printed out as the .csv file for easy access and w ide application in other systems. This auto-building algorithm of the GNM is available for plenty of cases such as finding a shortest path, guiding a route in emergency situation, and semantic analysis.

Neural Theorem Prover with Word Embedding for Efficient Automatic Annotation (효율적인 자동 주석을 위한 단어 임베딩 인공 신경 정리 증명계 구축)

  • Yang, Wonsuk;Park, Hancheol;Park, Jong C.
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.79-84
    • /
    • 2016
  • 본 연구는 전문기관에서 생산되는 검증된 문서를 웹상의 수많은 검증되지 않은 문서에 자동 주석하여 신뢰도 향상 및 심화 정보를 자동으로 추가하는 시스템을 설계하는 것을 목표로 한다. 이를 위해 활용 가능한 시스템인 인공 신경 정리 증명계(neural theorem prover)가 대규모 말뭉치에 적용되지 않는다는 근본적인 문제를 해결하기 위해 내부 순환 모듈을 단어 임베딩 모듈로 교체하여 재구축 하였다. 학습 시간의 획기적인 감소를 입증하기 위해 국가암정보센터의 암 예방 및 실천에 대한 검증된 문서들에서 추출한 28,844개 명제를 위키피디아 암 관련 문서에서 추출한 7,844개 명제에 주석하는 사례를 통하여 기존의 시스템과 재구축한 시스템을 병렬 비교하였다. 동일한 환경에서 기존 시스템의 학습 시간이 553.8일로 추정된 것에 비해 재구축한 시스템은 93.1분 내로 학습이 완료되었다. 본 연구의 장점은 인공 신경 정리 증명계가 모듈화 가능한 비선형 시스템이기에 다른 선형 논리 및 자연언어 처리 모듈들과 병렬적으로 결합될 수 있음에도 현실 사례에 이를 적용 불가능하게 했던 학습 시간에 대한 문제를 해소했다는 점이다.

  • PDF

The Study of Automatic Extracting System on Korean Full text (한글 문헌 자동축약 시스템에 관한 연구)

  • Kim, Se-Jung;Cho, Sung-Ho
    • Annual Conference on Human and Language Technology
    • /
    • 1992.10a
    • /
    • pp.27-38
    • /
    • 1992
  • 본 연구는 한글 문헌을 컴퓨터를 이용하여 축약하는 시스템 구축에 관한 연구로서, 기존의 '완전 자동축약'에 따른 축약문 생성의 편협성을 해결하기 위하여 '자동축약 + 후통제 처리'라는 절충형 시스템 관리 형태로 실제 실현 가능한 시스템을 설계한다는데 그 큰 목적이 있다. 대상 문헌에 대한 구체적 적응 문법은 언어학적 문법 이론인 '격문법 이론'과 '성분 이론'을 그 핵심으로 이용하여 문장을 '의미 있는 어절' 단위로 추출, 해당 문헌을 축약하는 방법을 택하였다.

  • PDF

An approach to Korean License Plate Recognition Based on Vertical, Horizontal Edge Matching (수직, 수평 성분을 이용한 한국 자동차 번호판 인식)

  • 서동훈;정해권;이원돈
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10b
    • /
    • pp.610-612
    • /
    • 2003
  • 일상 생활에서 자동차의 수가 증가함에 따라 최근 자동차 번호판을 자동으로 인식하는 시스템이 다양한 곳에서 이용되고 있다. 일례로 공항이나 아파트 단지에서 자동으로 문을 개폐해주는 시스템을 도입하고 있다. 기존에 주차권을 통한 개폐기와의 차이점 달려오던 자동차가 일정 속도만 유지하면 자동으로 번호를 인식하는 점이다. 또한 번호판을 통해 정확한 자동차에 대한 정확한 정보를 관리할 수 있다. 이러한 시스템을 위해서 자동차 번호판 영역의 정확한 추출이 필요하다. 본 논문은 자동차 번호판 영역을 RGB영역으로 인식하던 시스템에 수직, 수평 선분을 포함하여 기존에 RGB영역으로 인식하던 시스템의 단점을 보완하고 더 나은 인식시스템 구현하고 실험 하였다.

  • PDF

Recognition of Resident Registration Card using Enhanced ART2-based RBF Network (개선된 ART2 기반 RBF 네트워크를 이용한 주민등록증 인식)

  • Cheong, Ho-Geun;Min, Ji-Hee;Kim, Kwang-Baek
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.05a
    • /
    • pp.202-206
    • /
    • 2005
  • 우리나라 주민등록증은 주소지, 주민등록 번호, 지문 등 개개인의 방대한 정보를 가진다. 그런데 현재의 플라스틱 주민등록증은 위?변조가 쉬워 사회적으로 많은 문제를 일으키고 있다. 이러한 문제점을 해결하기 위하여 주민등록증을 전산화 하여 주민등록증 위조여부를 판단하고 있다. 본 논문에서는 주민등록증 영상을 자동 인식할 수 있는 개선된 ART2기반 RBF 네트워크를 이용한 주민등록증 자동 인식 방법을 제안한다. 제안된 방법은 주민등록증 영상에서 위치 정보와 수직 및 수평 히스토그램 방법을 이용하여 주민등록번호와 발행일 영역을 추출한다. 그리고 추출된 주민등록번호와 발행일 영역에서 4 방향 윤곽선 추적 알고리즘으로 개별 문자를 추출한다. 추출된 개별 코드는 개선된 ART2 기반 RBF 네트워크를 제안하여 인식에 적용한다. 제안된 ART2 기반 RBF 네트워크는 ART2알고리즘을 중간층으로 적용하고 중간층과 출력층 간의 학습은 일반화된 델타 학습에 모멘텀을 적용하여 학습 성능을 개선한다. 실제 주민등록증 영상을 이용하여 실험한 결과, 제안된 ART2기반 RBF 네트워크가 주민등록증 인식에 효율적인 것을 확인하였다.

  • PDF

A Relational Information Extraction System from Biomedical Literature (생의학 문헌에서의 관계 정보 추출 시스템)

  • Lim, Joon-Ho;Lim, Jase-Soo;Jang, Hyun-Chul;Park, Soo-Jun
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.932-937
    • /
    • 2007
  • 생의학 분야 문헌의 양이 빠르게 증가함에 따라, 생의학 연구자들이 필요로 하는 정보를 얻기가 어렵게 되었다. 이를 해결하기 위해, 인간-컴퓨터 상호작용 분야에서는 생의학 문헌 검색 시스템, 또는 생의학 문헌의 정보 추출 시스템 등에 대한 연구가 진행되고 있다. 본 논문에서는 생의학 문헌으로부터 정보를 자동으로 추출하기 위한 관계정보 추출 시스템에 대해 소개한다. 소개하는 시스템은 크게 요약 수집 모듈, 관계 추출 모듈, 관계 가시화 모듈로 구성되어 있다. 우선, 요약 수집 모듈에서는 특정 주제의 문헌들을 검색 및 수집한다. 그리고, 관계 추출 모듈에서는 수집된 문헌들에 대해서, 단백질/유전자 등의 생물학 개체를 인식하고, 구문분석을 통하여 인식된 개체들 사이의 관계를 추출한다. 마지막으로, 관계 가시화 모듈에서는 추출된 관계를 통합하여 네트워크 형태로 가시화한다. 이 시스템은 생물학 실험 이전의 문헌 기반 타당성 검사, 단백질-단백질 상호작용 또는 특정 질병과 유전자의 조절관계 분석, 또는 대용량 문헌 처리를 통한 패스웨이 데이터베이스 구축 등에 활용될 수 있다.

  • PDF