• 제목/요약/키워드: 자동정보 추출

Search Result 1,995, Processing Time 0.035 seconds

Developing XForms Based Mobile User Interface for Web Service Composition (서비스 조합을 위한 XForms 기반의 모바일 사용자 인터페이스 개발)

  • Lee, Eun-Jung
    • The KIPS Transactions:PartD
    • /
    • v.15D no.6
    • /
    • pp.879-888
    • /
    • 2008
  • As web services have become an important architecture solution, web service composition applications are developed actively. A mobile application supporting multiple services requires a complex user interface so that the interface needs to consist of more than one view and to provide a way to navigate between views. In this paper, we presented a formal way to analyze a set of views for a given service specification, and a relation model between views and methods. We then provided an algorithm to generate codes for service method calls and navigation between views. Therefore, with an optional user configuration input, we could automatically generated XForms codes from the web service specifications. Finally, we developed a proof of concept implementation of XForms browser to show that the generated codes works well as an interface for web service compositions.

Development of Level Detecting Algorithm for Scoliosis using X-ray Image (X-ray 영상을 이용한 척추측만증 정도 검출 알고리즘 개발)

  • Park, Eun-Jeong;Jeong, Ju-Young;Lee, Ki-Young;Lee, Sang-Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.4 no.4
    • /
    • pp.242-249
    • /
    • 2011
  • In this study, The degree of scoliosis, an algorithm that can automatically detect was developed. Developed system was used for X-ray imaging source. The formula for the degree of curvature of the spine of the S <0, and, L> 0 is satisfied with the condition $Y=SX^2+L$ is a function expression. X-axis length can be changed and applied equally in all spline function graph, and the slope is $S=-L/92^2$. The graph on the degree of scoliosis of the differential equation Y'= 2SX could see that the extracted spine wire for the classification and the classification of scoliosis, the degree is determined as the available algorithms.

Sequencing Constraints-based Regression Testing of Concurrent Programs After Specification Changes (명세 변경 후 병행 프로그램의 순서 제약조건 기반 회귀 테스팅)

  • Kim, Hyeon-Soo;Chung, In-Sang;Bae, Hyun-Seop;Kwon, Yong-Rae;Lee, Dong-Gil
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.4
    • /
    • pp.370-383
    • /
    • 2000
  • This paper describes a new technique known as specification-based regression testing that is used for the revalidation of concurrent programs after changes are made to specifications. This type of regression testing requires sequencing constraint that specify precedence relations on the synchronization events. In order to extract sequencing constraint automatically, we use Message Sequence Charts(MSCs) that are considered partial and nondeterministic specifications. We show how to identify which sequencing constraint is affected by the modifications made to a specification rather than creating new sequencing constraint from scratch to reduce the cost of regression testing. We also describe how to determine that each affected sequencing constraint is satisfied by a program being tested.

  • PDF

A Technique to Link Bug and Commit Report based on Commit History (커밋 히스토리에 기반한 버그 및 커밋 연결 기법)

  • Chae, Youngjae;Lee, Eunjoo
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.5
    • /
    • pp.235-239
    • /
    • 2016
  • 'Commit-bug link', the link between commit history and bug reports, is used for software maintenance and defect prediction in bug tracking systems. Previous studies have shown that the links are automatically detected based on text similarity, time interval, and keyword. Existing approaches depend on the quality of commit history and could thus miss several links. In this paper, we proposed a technique to link commit and bug report using not only messages of commit history, but also the similarity of files in the commit history coupled with bug reports. The experimental results demonstrated the applicability of the suggested approach.

DNA Band Recognition using the Topographical Features of Images (영상의 지형적 특징에 의한 유전밴드 인식)

  • Hwang, Deok-In;Gong, Seong-Gon;Jo, Seong-Won;Jo, Dong-Seop;Lee, Seung-Hwan
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.11
    • /
    • pp.1350-1358
    • /
    • 1999
  • 이 논문에서는 유전밴드 영상신호에 포함되어 있는 지형적 특징을 이용하여 밝기의 변화가 일정하지 않은 유전밴드를 인식하는 방법을 연구하였다. 유전밴드는 동일인을 식별하는데 있어서 지문보다 높은 신뢰성을 가지고 있으므로, 유전밴드 영상에서 유전밴드의 유무와 위치를 자동적으로 검출하는 것은 매우 중요하다. 레인내의 밝기의 변화가 일정한 유전밴드는 미분연산자에 의해 검출할 수 있지만, 밝기의 변화가 일정하지 않은 레인내의 유전밴드는 일반적인 인식방법에 의해서는 검출하기 어렵다. 따라서 유전밴드 영상으로부터 지형적 특징을 추출하고, 이것으로부터 계산한 곡률(curvature)의 크기에 의해 유전밴드를 인식함으로써 레인의 밝기가 변화하는 경우에도 효과적으로 인식하였다.Abstract This paper presents recognition of DNA band using the topographical features of DNA band images. The DNA band provides a more reliable way of identification than fingerprints. Recognition based on differentiation operators can easily detect the DNA band if the brightness of lane in the image is almost uniform. When the brightness of the lane changes gradually, the DNA bands are hard to be recognized. Using the curvature magnitude of the lane computed from topographic features extracted from DNA images, the DNA bands are efficiently recognized in the lane whose brightness changes.

Heating-Plan Heuristics for Forming Curved Shell Plate of Ship Structure (선체 외판 부재의 곡 성형을 위한 가열 계획 생성 휴리스틱)

  • Gang, Byeong-Ho;Park, Gi-Yeok;Kim, Ung;Ryu, Gwang-Ryeol;Lee, Jeong-Hwan;Do, Yeong-Chil;Kim, Dae-Gyeong;Kim, Se-Hwan
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2007.11a
    • /
    • pp.570-578
    • /
    • 2007
  • 선체 외판 부재의 곡 성형 과정은 주로 가열(열간가공)에 의해 수행된다. 이 가열 작업은 작업자의 경험과 지식에 크게 의존하는 매우 어려운 작업이다. 본 논문에서는 선체 외판의 곡 성형을 위한 가열 계획을 자동으로 수립할 수 있는 휴리스틱을 소개한다. 현장 전문가의 지식에 기반한 이 휴리스틱은 크게 가열 선을 생성하는 부분과 외력을 주는 도구를 배치하는 부분으로 구성된다. 가열 선은 대상 부재의 현재 곡면과 설계된 목적곡면과의 비교를 통해 생성되고, 가우스 커널 함수를 통해 스무딩(smoothing)된다. 현장에서는 열간가공 시 의도하지 않은 변형을 막으면서 작업시간을 줄이고자 외력을 이용한다. 외력의 위치와 방향은 가열 선 군집화를 통해 추출된 대표 가열 선을 기준으로 결정된다. 가상의 인공 곡면과 현장의 실제 부재를 대상으로 실험한 결과, 이 휴리스틱이 숙련된 전문가가 수립한 가열 계획과 유사한 가열 계획을 수립할 수 있음을 확인하였다.

  • PDF

Automatic Extraction of Rescue Requests from Drone Images: Focused on Urban Area Images (드론영상에서 구조요청자 자동추출 방안: 도심지역 촬영영상을 중심으로)

  • Park, Changmin
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.3
    • /
    • pp.37-44
    • /
    • 2019
  • In this study, we propose the automatic extraction method of Rescue Requests from Drone Images. A central object is extracted from each image by using central object extraction method[7] before classification. A central object in an images are defined as a set of regions that is lined around center of the image and has significant texture distribution against its surrounding. In this case of artificial objects, edge of straight line is often found, and texture is regular and directive. However, natural object's case is not. Such characteristics are extracted using Edge direction histogram energy and texture Gabor energy. The Edge direction histogram energy calculated based on the direction of only non-circular edges. The texture Gabor energy is calculated based on the 24-dimension Gebor filter bank. Maximum and minimum energy along direction in Gabor filter dictionary is selected. Finally, the extracted rescue requestor object areas using the dominant features of the objects. Through experiments, we obtain accuracy of more than 75% for extraction method using each features.

Face Recognition and Age Classification Study using Image Processing (영상처리를 이용한 얼굴 인식 및 연령 분류에 대한 연구)

  • Kang, Sung-wook;Jeong, Jin-dong;Seo, Hong-il;Lee, Hae-Yeoun
    • Annual Conference of KIPS
    • /
    • 2013.11a
    • /
    • pp.1370-1373
    • /
    • 2013
  • 영상에서 사람의 얼굴 영상을 추출하여 성별 및 연령대를 자동으로 분석하는 시스템은 광고판 등을 이용한 마케팅, 보안, 통계 분야 등 여러 가지 적용이 가능하다. 이러한 시스템의 개발을 위해서는 얼굴 인식 알고리즘과 특성 분류 알고리즘이 요구된다. 그러나 기존 알고리즘의 경우 문제점이 존재한다. 얼굴 인식 알고리즘으로 가장 많이 사용되는 HAAR 특징은 오탐률이 높으며, 특성 분류 알고리즘으로 사용하는 Fisherface 기법의 경우 분류 Class가 3가지 이상시 분류 성공률이 현저히 떨어지는 문제점이 있다. 본 논문에서는 이 두 알고리즘의 문제점을 개선한 새로운 알고리즘을 제안한다. 얼굴 인식을 위해 기존 HAAR 특징과 LBP 특징을 결합하여 오탐률을 크게 감소시켰다. 또한 특성 분류를 위하여 3 Class 이상의 분류를 대체할 방법으로 2 Class-multi-level 반복 분류방식을 사용하였다. 대량의 데이터에 대한 실험을 통하여 제안한 방법이 기존 방법들보다 성능이 향상되었음을 보인다.

The Recovery and Analysis of Digital Data in Digital Multifunction Copiers with a Digital Forensics Perspective (디지털포렌식 관점에서의 디지털복합기내 데이터 복구 및 분석)

  • Park, Il-Shin;Kang, Cheul-Hoon;Choi, Sung-Jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.20 no.6
    • /
    • pp.23-32
    • /
    • 2010
  • Caused by the development of IT environment, the frequency of using the embedded machines is increasing in our regular life. A typical example of these embedded machines is a Multi Function Copier and it has various functions; it is used as copier, scanner, fax machine, and file server. We would like to check the existence of and the way to abstract the data that may have been saved through using the scanner of the multi function printer and discuss how to use those data as the evidence.

Epileptic Seizure Detection Using CNN Ensemble Models Based on Overlapping Segments of EEG Signals (뇌파의 중첩 분할에 기반한 CNN 앙상블 모델을 이용한 뇌전증 발작 검출)

  • Kim, Min-Ki
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.12
    • /
    • pp.587-594
    • /
    • 2021
  • As the diagnosis using encephalography(EEG) has been expanded, various studies have been actively performed for classifying EEG automatically. This paper proposes a CNN model that can effectively classify EEG signals acquired from healthy persons and patients with epilepsy. We segment the EEG signals into sub-signals with smaller dimension to augment the EEG data that is necessary to train the CNN model. Then the sub-signals are segmented again with overlap and they are used for training the CNN model. We also propose ensemble strategy in order to improve the classification accuracy. Experimental result using public Bonn dataset shows that the CNN can detect the epileptic seizure with the accuracy above 99.0%. It also shows that the ensemble method improves the accuracy of 3-class and 5-class EEG classification.