링크 관리 프로토콜에서 데이터 링크의 연결성 검증 및 링크 식별자의 자동 매핑을 위하여 교환하는 Test 메시지와 제어채널의 IP 주소를 자동으로 발견하기 위한 Bootstrap 메시지는 제어채널이 아닌 데이터 링크로 전달되므로 광 네트워크에서 불투명한 스위칭 기술을 요구한다. 본 논문에서는 불투명한 스위칭 기술을 지원하지 않는 광 네트워크에서 망 관리 기능을 이용하여 인접 노드 사이의 제어채널에 대한 IP 주소 및 인접 노드와 데이터 링크에 대한 식별자를 자동으로 구성 할 수 있는 메커니즘을 제안한다. 망 관리를 통한 자동 구성은 불투명한 스위칭 기술을 지원하지 않는 광 네트워크에서 수동 구성에 따른 오류 발생의 가능성을 개선시킬 수 있다.
울산항은 1996년 9월부터 입출항 선박의 항행안전을 위해 VTS 시스템을 설치운영하고 있으나 많은 선박통항량과 위험화물 운송선박의 잦은 운항으로 여러 가지 위험요소가 상존하고 있는 개항장이다. VTS 시스템은 레이더의 자동물표추적장치에 의한 데이터, PORT-MIS의 선박관련 데이터 등 많은 정보들이 분산 처리되어 관제사에게 제공되고 있으나 최근 선박에 설치 운영되고 있는 선박자동식별장치(AIS)에 의해 선박의 정보들이 더욱 신속하고 정확하게 처리되는 것으로 평가되고 있다. 그러나 인위적인 과실에 의한 AIS의 오류정보들과 원활하지 못한 데이터통신에 의한 데이터 누락현상에 의해 VTS 시스템 운용에 막대한 영향을 초래하고 있다. 이러한 인위적인 과실에 의한 AIS의 오류 데이터는 PSC 검사관들의 적극적인 개선의지로 정책적인 계도작업을 수행하고 있으므로 점차 개선될 것으로 기대된다. 따라서 본 연구에서 AIS의 원활하지 못한 통신망에 의한 데이터 누락 현상에 의한 VTS 시스템에서의 영향을 조사 분석하고 이에 따른 개선 방안을 제시하고자 한다.
선박관제시스템(VMS)는 최근 선박에서 도입되어 설치된 선박자동식별장치(AIS)에 의해 많은 정보를 획득하여 처리하고 있으나 AIS가 미설치된 소형선박, 어선 및 기타선박들에 대해 지속적으로 설치를 확대하고 있다. 특히 항계 내의 선박들의 주 통신시스템인 VHF 무선전화기는 항내에 입출항 중인 모든 선박들이 사용하기 때문에 통화 교신량의 폭주로 원활한 통신이 힘들어지고 또한 선박자동식별장치의 데이터 통신채널 또한 VHF이므로 class A 선박들도 동적 데이터의 누락현상이 발생하고 class B 선박들도 지역적으로 데이터 폭주현상이 발생하는 것으로 평가되고 있는 실정이다. 따라서 연안에서 운항하고 있는 모든 선박들을 모니터링하기 위해 소형선 및 심지어 어선들까지 선박자동식별장치의 설치를 유도하고 있는 실정이므로 통신채널의 폭주현상에 따른 데이터 누락현상은 더욱 심해질 것이다. 따라서 본 연구는 주파수공용방식(TRS: Trunk Radio System)의 통신시스템을 이용한 선박위치 자동발신장치에 적용방안을 제안하고 그 활용성을 입증하고자 한다.
본 연구는 말더듬 화자들의 음성 데이터를 기반으로 하여, 인공지능 기술을 활용한 말더듬 자동 식별 방법을 개발하는 것을 주목적으로 진행되었다. 특히, 한국어를 모국어로 하는 말더듬 화자들을 대상으로 CNN(convolutional neural network) 알고리즘을 활용한 식별기 모델을 개발하고자 하였다. 이를 위해 말더듬 성인 9명과 정상화자 9명을 대상으로 음성 데이터를 수집하고, Google Cloud STT(Speech-To-Text)를 활용하여 어절 단위로 자동 분할한 후 유창, 막힘, 연장, 반복 등의 라벨을 부여하였다. 또한 MFCCs(mel frequency cepstral coefficients)를 추출하여 CNN 알고리즘을 기반한 말더듬 자동 식별기 모델을 수립하고자 하였다. 연장의 경우 수집결과가 5건으로 나타나 식별기 모델에서 제외하였다. 검증 결과, 정확도는 0.96으로 나타났고, 분류성능인 F1-score는 '유창'은 1.00, '막힘'은 0.67, '반복'은 0.74로 나타났다. CNN 알고리즘을 기반한 말더듬 자동분류 식별기의 효과를 확인하였으나, 막힘 및 반복유형에서는 성능이 미흡한 것으로 나타났다. 향후 말더듬의 유형별 충분한 데이터 수집을 통해 추가적인 성능 검증이 필요함을 확인하였다. 향후 말더듬 화자의 발화 빅데이터 확보를 통해 보다 신뢰성 있는 말더듬 자동 식별 기술의 개발과 함께 이를 통한 좀 더 고도화된 평가 및 중재 관련 서비스가 창출되기를 기대해 본다.
본 연구는 한국어 학습자 작문의 자동 평가 시스템 개발의 일환으로, 자동 평가 결과에 대한 설명과 근거가 될 수 있는 평기 기준 범주를 선정하기 위한 데이터 구축과 선정 방법을 제시한다. 작문의 평가 기준의 영역과 항목은 평가체계에 대한 이론적 연구에 따라 다양하다. 이러한 평가 기준은 자동 평가에서는 식별되기 어려운 경우도 있고, 각각의 평가 기준이 적용되는 작문 오류의 범위도 다양하다. 그러므로 본 연구에서는 자동 평가 기준 선정의 문제는 다양한 평가 기준에 중 하나를 선정하는 분류의 문제로 보고, 학습데이터를 구축, 기계학습을 통해 자동 작문 평가에 효과적인 평가 기준을 선정 가능성을 제시한다.
본 논문에서는 자율운항선박의 예측 가능한 운항 경로 상에 잠재된 비상상황을 인식하기 위하여 운항 해역의 항적 정보를 활용한 방안과 이를 기반으로 충돌 위험과 같은 비상위험을 식별하는 프레임워크를 설계하였다. 설계한 프레임워크는 크게 항적 특성 분석 모듈, 항로예측 모듈, 위험 식별 모듈로 구성된다. 항적 특성 분석 모듈에서는 자율운항선박의 운항 해역에 관한 선박들의 항적 정보를 활용하기 위하여, 대상 VTS 관제 영역 내에서 취합된 누적 선박자동식별장치(AIS) 데이터를 이용하여 선박의 항적 특성을 분석하여 데이터베이스(DB)를 생성하였다. 그리고 운항 경로 예측 모듈에서는 누적된 항적 정보와 자율운항선박의 현재 운항 정보를 기반으로 특정 시간 동안의 운항 경로를 예측하기 위한 학습 네트워크 모델을 구성하였다. 마지막으로, 위험 식별 모듈에서는 예측한 운항 경로 상에 최근접점과 최근접점 거리 정보를 이용하여 충돌 위험 가능성이 있는 충돌위험영역을 식별하였다. 설계한 프레임워크는 자율운항선박의 육상 관제소에서 원격 제어를 통해 위험상황을 인지하고 회피할 수 있는 정보를 제공할 수 있음을 실제 항적 데이터를 활용하여 그 결과를 검증하였다.
최근 CCTV나 블랙박스 등 멀티미디어 데이터를 생성해내는 장치의 사용이 늘어나고 있다. 이러한 대용량 멀티미디어 데이터가 증가함에 따라 사용자가 동영상과 같은 멀티미디어 데이터 내의 객체를 식별하기 위해서는 많은 시간을 할애하여 매뉴얼하게 일일이 찾아야 하는 한계점이 있다. 본 논문에서는 사용자가 동영상 및 이미지에서와 같은 멀티미디어 데이터에서 객체를 자동으로 식별할 수 있 수 있는 딥러닝 기반의 객체 식별 및 검색 모델을 제안한다. 제안하는 객체 식별 검색은 이미지 검색과 동영상 검색을 지원한다. 이미지 검색에서는 이미지에 존재하는 동일한 객체를 검색 대상 이미지들에서 객체를 식별하고, 이미지에 존재하는 객체를 검색하여 결과로 반환한다. 또한 동영상 검색에서는 동영상에서 검색하고자 하는 객체를 식별하고 객체가 출현하는 시간을 전처리과정을 통해 기록하며, 검색하고자 하는 동영상 내에 존재하는 객체의 검색이 가능하다. 따라서 사용자가 동영상에서 객체의 검색 시 키워드 검색이 가능하여 동영상을 모두 재생하서 객체를 식별해야 하는 번거로움을 해결할 수 있다.
본 고에서는 현재 해상과 항공 이동통신에서는 자동 감시 및 트래픽 완화를 위해 도입되고 있는 자동 식별장치에 대한 기술적 특성에 대해서 기술하였다. 특히 해상에서는 2002년 7월부터 의무적으로 선박자동식별장치를 설치할 것을 SOLAS(Safety of Life at Sea)조약에서 규정하고 있다. 자동감시시스템인 선박자동식별장치는 디지틀 무선링크와 GNSS(Global Navigation Satellite System)를 컴퓨터와 상호 연결해서 효율적으로 선박간의 충돌 회피 및 트래픽 관리를 수행한다. 이를 위해서는 각 장치간에 데이터 링크를 효율적으로 사용해야 하는데 이를 SOTDMA(Self-Organized Time Division Multiple Access)라 부르는 알고리즘이 수행하고 있다. 이 알고리즘은 여러 무선국에 짧은 버스트를 허용해서 정확히 조직화한다. 그러므로 무선국을 설치한 선박이나 항공기간에 충돌은 최소화된다. 본 고에서는 해상 및 항공에서 SOTDMA 알고리즘 동작 및 능력을 분석해서 모델링하여 이 시스템의 throughput을 평가하는 방법을 제시 하였다.
본 고에서는 현재 해상과 항공 이동통신에서는 자동 감시 및 트래픽 완화를 위해 도입되고 있는 자동 식별장치에 대한 기술적 특성에 대해서 기술하였다. 특히 해상에서는 2002년 7월부터 의무적으로 선박자동식별장치를 설치할 것을 SOLAS(Safety of Life at Sea)조약에서 규정하고 있다. 자동감시시스템인 선박자동식별장치는 디지틀 무선링크와 GNSS(Global Navigation Satellite System)글 컴퓨터와 상호 연결해서 효율적으로 선박간의 충돌 회피 및 트래픽 관리를 수행한다. 이를 위해서는 각 장치간에 데이터 링크를 효율적으로 사용해야 하는데 이를 SOTDMA(Self-Organized Time Division Multiple Access)라 부르는 알고리즘이 수행하고 있다. 이 알고리즘은 여러 무선국에 짧은 버스트를 허용해서 정확히 조직화한다. 그러므로 무선국을 설치한 선박이나 항공기간에 충돌은 최소화된다. 본 고에서는 해상 및 항공에서 SOTDMA 알고리즘 동작 및 능력을 분석해서 모델링하여 이 시스템의 throughput을 평가하는 방법을 제시하였다.
본 논문에서는 수중에서 발생되는 전이 신호의 자동 식별을 위하여 특징벡타를 추출하는 기법과 식별 알고리즘에 대하여 논한다. 특징벡타 추출기법으로 적은 계수로도 우수한 성능을 보이는 wavelet 변환을 사용한 방법을 제안하고 기종의 고전적인 방법들과 비교한다. 자동식별을 위해서는 MLP (Multilayer Perceptron), RBF (radial Basis Function), MLP-클래스 등 세 종류의 신경회로망을 사용하고, 성능 및 신뢰성을 높이기 위해서 두가지 특징벡타 및 세 식별기를 결합하는 방법을 사용한다. Traco의 표준 천이 데이터 집합 (standard transient data set) I과 모의 실험 데이터를 사용하여, 주어진 천이신호가 배경잡음에 비하여 충분히 에너지가 크고, 유한개의 소음원이 존재하며, 동시에 둘 이상의 소음원이 존재하지 않는다는 가정하에서 제안된 특징벡타 추출기법과 식별 알고리즘의 우수성을 확인한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.