• Title/Summary/Keyword: 자기 연마

Search Result 175, Processing Time 0.029 seconds

An Experimental Study on Magnetic Assisted Polishing of Polycarbonate Plate for Recycling (폴리카보네이트 판재의 재활용을 위한 자기연마 가공)

  • Lee, Yong-Chul;Kim, Kwang-Sam;Kwak, Tae-Soo;Lee, Jong-Ryul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.3
    • /
    • pp.1-6
    • /
    • 2013
  • This study has focused on transparency recovering of the polycarbonate by polishing its surface for recycling. The polycarbonate has many properties such as excellent mechanical strength, electrical insulating, superior heat resistance to other plastic material and especially good transparency. It has been used as barrier for the traffic noise at the roadside and the greenhouse for the palm house. But the polycarbonate has changed slightly as time goes by 10 years because of exposure to the strong sunlight and oxidization in the atmosphere, as result has lost its transparency. Magnetic assisted polishing has been utilized as an effective polishing method to recover the transparency of polycarbonate. The polycarbonate which has been used for 10 years was adopted as the sample. The first surface roughness of the sample was 1$1.23{\mu}mRa$, $7.5{\mu}mRz(DIN)$ respectively. In the experimental results, it showed that the surface roughness of the polished sample improved $0.013{\mu}mRa$, $0.08{\mu}mRz(DIN)$ from the first surface roughness respectively. The surface roughness get almost back again by magnetic assisted polishing. These results also showed that the magnetic assisted polishing was efficient machining method to reuse the polycarbonate material.

A Study on the Characteristics of Internal-Face Magnetic Abrasive Finishing for Titanium Pipe (타이타늄 파이프의 내면 자기연마 가공에 관한 연구)

  • Li, Li-Hai;Mun, Sang-Don;Kim, Young-Whan;Park, Won-Ki;Yang, Gyun-Eui
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.6
    • /
    • pp.701-708
    • /
    • 2011
  • Although Titanium material has superior properties, it belongs to difficult-to-machine materials. The present research applies magnetic abrasive finishing to precision machining of internal-face of titanium pipes, and analyzed & assessed the influence of grinding conditions on magnetic abrasive effects through the removed amount and surface roughness of materials. There was the influence on grinding properties according to change of rotational speed, a total input of mixed powder and an input of grinding liquid, and when the total input, rotational speed and ratio of electrolytic iron versus magnetic abrasives are 8g and 1000rpm, it was most advantageous in aspects of surface roughness and material removal amount, and the grinding liquid remarkably improved the surface roughness and material removal amount only with addition of trace amounts of light oil rather than dry machining conditions. And a result of considering the influence on grinding properties by using an inert gas (Argon gas) for improving grinding properties of the internal-face of titanium pipe, the present research has obtained improvement effects in the removal amount and surface roughness through utilization of an inert gas.

A Study on the Improvement of Performance of High Speed Cutting Tool using Magnetic Fluid Grinding Technique(A Performance Estimation of High Speed Cutting Tool) (자기연마기술을 이용한 고속절삭공구의 성능향상에 관한 연구 (고속절삭공구의 성능평가를 중심으로))

  • Cho J.R.;Yang S.C.;Jung Y.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.354-361
    • /
    • 2005
  • In high speed cutting process, due to the friction between the tool and workpiece, a temperature rise of contacting part is serious. It need to develop cutting tool for overcoming such a poor condition. So now, some studies, the optimization of tool shapes, the fine grains of tool material, multi-layer coating of tools are processing. If mirror finishing on the tool is processed, there is advantage of relation between chip and tool, because of less friction, and also tool's lift would be increased. As a result mirror like finishing is expected efficient enhancement of tool. Generally, it is too difficult to process by a general way for tools of complex shapes, it is required a new method to process such complex shape tools. The magnetic fluid polishing technique can polish the workpiece of complex shape, because the polishing method which polishes as compress the workpiece by the magnetism abrasives to arrange to the linear according to the line of magnetic force. In this paper, We polished the surface of the high speed cutting tool using the magnetic fluid polishing technique, to enhance the performance of the high speed cutting tool.

  • PDF

Surface Condition Monitoring in Magnetic Abrasive Polishing of NAK80 Using AE Sensor and Neural Network (AE 센서와 신경회로망을 이용한 NAK80 금형강의 자기연마 가공특성 모니터링)

  • Kim, Kwang-Heui;Shin, Chang-Min;Kim, Tae-Wan;Kwak, Jae-Seob
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.601-607
    • /
    • 2012
  • The magnetic abrasive polishing (MAP), for online monitoring with AE sensor attachment, was performed in this study. To predict the surface roughness after the magnetic abrasive polishing of NAK80, the signal data acquired from the AE sensor were analyzed. A dimensionless coefficient, which consisted of average of AErms and standard deviation of AE signal, was defined as a characteristic of the MAP and a prediction model was obtained using least square method. A neural network, which had multiple input parameters from AE signals and polishing conditions, was applied for predicting the surface roughness. As a result of this study, it was seen that there was very close correlation between the AE signal and the surface roughness in the MAP. And then on-line prediction of the surface roughness after the MAP of the NAK80 was possible by the developed prediction model.

Farbrication of Repeated 3D Shapes using Magnetorheological Fluid Polishing (자기유변유체 연마공정을 응용한 미세부품의 형상가공)

  • Kim Y.J.;Min B.K.;Lee S.J.;Seok J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1265-1268
    • /
    • 2005
  • Due to the increase of the need for reliable high density information storage devices, the demand for precise machining of the slider in HDD is rapidly growing. The present fabrication process of slider bears some serious problems such as low yield ratio in mass production, which is mainly caused by inefficient machining processes in shaping camber and crown on the slider. In order to increase slider yield ratio in HDD, a new systematic machining process is proposed and developed in this work. This new machining process includes the use of magnetorheological (MR) fluid, a smart polishing material generally used for ultra-fine surface finishing of micro structures. It is shown that the process proposed in this work enables to make camber and crown pattern in the scale of few tens of nanometers. Experiment results shows that the MR polishing can be also used for shaping process of micro structures.

  • PDF

Ultra Finishing by Magnet-abrasive Grinding for Internal-face of STS304 Pipe (STS304 파이프 내면의 초정밀 자기연마)

  • 김희남;윤영권;심재환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.947-952
    • /
    • 1997
  • The magnetic polishing is the useful method to finish using magnetic power of a magnet. The time hasn't been that long since the magnetic polishing method was introduced to korea as one of precision polishing techniques. However, the reasons for not being spreaded widely are the magnetic polishing method don't have mediocrity for machine, the efficiency of magnet-abrasive is confined as a bad polishing, and there are not many researchers in this field. The mechanism of this R&D is dealing with the dynamic state of magnet-abrasive. This paper deals with mediocritizing magnetic polishing device into regular lathe and this experiment was conducted in order to get a best surface roughness with low cost. Beside the subsidiary experiment was performed using the mixed magnet-abrasive with general alumina, barium. This paper introduced the main reason for difficulty using this method in industrial field. It needs more continues research on it. This paper contains the result of experiment to acquire the best surface roughness, not using the high-cost polishing material in processing. The average diameters of magnet-abrasive are the particles of 150 $\mu\textrm{m}$, 250 $\mu\textrm{m}$.

  • PDF

Application of Magnetic Assisted Polishing for ELID Ground Surface of Aluminum Oxide Ceramics (알루미나 세라믹스 ELID연삭면의 자기연마 가공 특성)

  • Lee, Yong-Chul;Jung, Myung-Won;Kim, Tae-Kyu;Kwak, Tae-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.12
    • /
    • pp.1259-1264
    • /
    • 2013
  • This study has focused on the application of magnetic assisted polishing for ELID ground surface of aluminum oxide ceramics. Aluminum oxide ceramics has been widely used as advanced materials for electric, optic, mechanic, chemical usage and so on. In this study, ELID grinding and magnetic assisted polishing technology was adopted for high-effective manufacturing and high quality surface of ceramic parts. The characteristic of MAP machining have been evaluated by the value of surface roughness and surface profile before and after magnetic assisted polishing. As the results of experiments, the surface roughness after magnetic assisted polishing has shown a significant improvement and the surface roughness was more improved when the feed rate of tool became slow.

Investigation for Mirror-surface Machining Properties of Mold Core of Glass Molding Press by Parallel Grinding and Magnetic Assistance Polishing (평행연삭과 자기연마에 의한 유리렌즈 성형용 코어 금형의 표면가공 특성)

  • Lee, Yong-Chul;Kim, Gyung-Nyun;Kwak, Tae-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.12
    • /
    • pp.22-27
    • /
    • 2010
  • The usage of ultra-precision machining is increasing by the manufacturing of precision optical elements such as camera lens, laser printer, CD player, DVD and microscope parts etc.. The WC alloy material is in wide use by mold core to improve the productivity and accuracy in manufacturing those precision parts. The WC alloy mould core can be machined effectively by the parallel grinding process which is an excellent technique for manufacturing of surface profile hard to machining materials such as the hardened metal alloy, Ceramics, Glass and so on. Magnetic assisted polishing as a final polishing process has also been utilized to obtain ultra-precision mirror surface with the elimination of traces presented on ground surface. It is able to deduce the optimal ultra-precision machining conditions of the WC alloy material from the experiment and analyses results.

Magnetic Polishing Using Ba-Ferrite Magnetic Substance (Ba-Ferrite 자성체를 사용한 자기연마 가공)

  • Yun, Yeo-Kwon;Kim, Hee-Nam
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.491-497
    • /
    • 2010
  • The magnetic polishing is the useful method to finish some machinery fabrications by using magnetic power. This method is one of the precision techniques and has an aim for clean technology in the clean pipes. The magnetic abrasive polishing method is not so common in the field of machine that it is not known to widely. There are rarely researcher in this field because of non-effectiveness of magnetic abrasive. This paper deals with mediocritizing magnetic polishing device into regular lathe and this experiment was conducted in order to get the best surface roughness at low cost. This paper contains the result of experiment to acquire the best surface roughness, not using the high-cost polishing material in processing. In this paper, We could have investigated into the changes of the movement of magnetic abrasive grain. In reference to this result, we could have made the experiment which is set under the condition of the magnetic flux density, polishing velocity according to the form of magnetic brush.

Investigation of Polishing Characteristics of Fused Silica Glass Using MR Fluid Jet Polishing (MR Fluid Jet Polishing 시스템에 의한 Fused Silica Glass 연마특성 고찰)

  • Lee, Jung-Won;Cho, Yong-Kyu;Cho, Myeong-Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.5
    • /
    • pp.761-766
    • /
    • 2012
  • Abrasive fluid jet polishing processes have been used for the polishing of optical surfaces with complex shapes. However, unstable and unpredictable polishing spots can be generated due to the fundamental property of an abrasive fluid jet that it begins to lose its coherence as the jet exits a nozzle. To solve such problems, MR fluid jet polishing has been suggested using a mixture of abrasives and MR fluid whose flow properties can be readily changed according to imposed magnetic field intensity. The MR fluid jet can be stabilized by imposed magnetic fields, thus it can remain collimated and coherent before it impinges upon the workpiece surface. In this study, MR fluid jet polishing characteristics of fused silica glass were investigated according to injection time and magnetic field intensity variations. Material removal rates and 3D profiles of the generated polishing spots were investigated. From the results, it can be confirmed that the developed MR fluid polishing system can be applied for stable and predictable precise polishing of optical parts.