• Title/Summary/Keyword: 자기회귀분석법

Search Result 102, Processing Time 0.021 seconds

Forecasting of Pine-Mushroom Yield Using the Conditional Autoregressive Model (조건부 자기회귀모형을 이용한 송이버섯 생산량 예측)

  • 이진희;신기일
    • The Korean Journal of Applied Statistics
    • /
    • v.13 no.2
    • /
    • pp.307-320
    • /
    • 2000
  • It has been studied to find relationships between pine-mushroom yield and climatic factors. Recently, Hyun-Park, Key-I! shin and Hyun-Joong Kim(1998) investigated relationships between pine-mushroom yield and climatic factors by autoregression model. In this paper, to improve the forecast we suggest the conditional autoregression model using probability of existing pine-mushroom production.

  • PDF

1.5T 자기공명영상기기에서 수소 자기공명분광법을 이용한 모델용액 내 포도당의 정량분석 및 임상적용 가능성에 대한 연구

  • 이경희;이정희;조순구;김용성;김형진;서창해
    • Proceedings of the KSMRM Conference
    • /
    • 2001.11a
    • /
    • pp.173-173
    • /
    • 2001
  • 목적: 1.5T 생체용 자기공명영상기기를 이용한 수소자기공명분광법으로 용액 내 물질의 정량분석에 대한 가능성을 알아보고자 하였다. 대상 및 방법: 0.01%에서 50%까지의 여러 농도를 갖는 포도당+증류수 혼합액의 모델용액을 만들어 생체용 자기공명영상기기와 시험관 nuclear magnetic resonance (NMR) 분광기에서 각각 수소 자기공명분광법을 시행하여 스펙트럼을 얻었다. 또한 12명의 당뇨환자에서 방광내의 소변에 대해 생체용 자기공명영상기기에서 스펙트럼을 얻고 소변을 추출하여 시험관 NMR 분광기에서 수소자기공명분광법을 시행하였다 각각의 방법으로 얻은 스펙트럼 상에서 포도당 농도에 따른 포도당/물 피크의 면적 비의 변화를 구하였고, 통계처리는 상관분석과 단순선형회귀분석을 시행하였고 회귀식을 산출하였다. 또한 생체용 자기공명영상기기를 이용하여 얻은 결과가 객관적인지 알아보기 위해 시험관 NMR 분광기에서 얻은 결과와의 상관관계를 분석하였다.

  • PDF

Bayesian analysis of directional conditionally autoregressive models (방향성 공간적 조건부 자기회귀 모형의 베이즈 분석 방법)

  • Kyung, Minjung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.5
    • /
    • pp.1133-1146
    • /
    • 2016
  • Counts or averages over arbitrary regions are often analyzed using conditionally autoregressive (CAR) models. The spatial neighborhoods within CAR model are generally formed using only the inter-distance or boundaries between the sub-regions. Kyung and Ghosh (2009) proposed a new class of models to accommodate spatial variations that may depend on directions, using different weights given to neighbors in different directions. The proposed model, directional conditionally autoregressive (DCAR) model, generalized the usual CAR model by accounting for spatial anisotropy. Bayesian inference method is discussed based on efficient Markov chain Monte Carlo (MCMC) sampling of the posterior distributions of the parameters. The method is illustrated using a data set of median property prices across Greater Glasgow, Scotland, in 2008.

A comparison study on regression with stationary nonparametric autoregressive errors (정상 비모수 자기상관 오차항을 갖는 회귀분석에 대한 비교 연구)

  • Yu, Kyusang
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.157-169
    • /
    • 2016
  • We compare four methods to estimate a regression coefficient under linear regression models with serially correlated errors. We assume that regression errors are generated with nonlinear autoregressive models. The four methods are: ordinary least square estimator, general least square estimator, parametric regression error correction method, and nonparametric regression error correction method. We also discuss some properties of nonlinear autoregressive models by presenting numerical studies with typical examples. Our numerical study suggests that no method dominates; however, the nonparametric regression error correction method works quite well.

On Testing the First-order Autocorrelation of the Error Term in a Regression Model via Multiple Bayes Factor (다중 베이즈요인에 의한 회귀모형 오차항의 자기상관 검정)

  • 한성실;김혜중
    • The Korean Journal of Applied Statistics
    • /
    • v.12 no.2
    • /
    • pp.605-619
    • /
    • 1999
  • 본 논문은 회귀분석에서 오차항의 1차 자기상관 존재 여부 및 그 값을 검정하는 방법을 베이지안 접근법으로 제안하였다. 이 방법은 모수공간의 다중분할로 인해 얻어진 여러 가설들에 대한 다중결정문제를 다중 베이즈요인에 관한 이론과 일반화 Savage-Dickey 밀도비를 이용한 사후확률 추정법을 합성하여 개발되었다. 이 방법은 기존의 검정법들에서 가능한 검정 뿐 아니라 이들이 해결할 수 없는 자기상관에 대한 다중결정문제에도 사용이 가능한데 그 효용성이 있다. 모의실험을 통하여 제안된 검정법의 유효성을 평가하였다.

  • PDF

Rational Estimation of Dam Low-flow Frequency Inflow (가뭄대응력 평가를 위한 합리적 댐 유입량 산정 연구)

  • Kim, Ji-Heun;Lee, Jae-Hwang;Kim, Yeong-O
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.178-178
    • /
    • 2021
  • 최근 들어 기후변화로 인한 극심한 가뭄 피해가 한반도에 발생하고 있다. 가뭄 상황에 대비하여 댐을 안정적으로 운영하기 위해서는 갈수빈도 유입량에 대한 분석이 필수적이다. 갈수빈도해석의 경우, 홍수빈도해석과 유사하게 확률밀도함수의 극값에 대한 확률값을 산정하며, 확률 분포형의 역함수에 비초과확률을 대입하여 산정한다. 그러나 홍수와 달리 가뭄은 지속기간이 긴 특성 탓에 자기상관을 고려해야하며, 댐 및 저수지 등 대규모 시설물의 경우 일반적인 하천과 달리 저류효과로 인해 누적 유량에 대한 고려가 필요하다. 이에 K-water는 자체 제작한 누가차분법 및 Disaggregation 두 가지 방법을 채택하여 실무에서 사용해왔다. 그러나 누가차분법을 사용할 경우, 빈도유입량이 지나치게 크게 산정되는 문제가 있으며, Disaggregation 방법을 사용하는 경우, 특정 빈도 이상의 극한가뭄에서 유입량의 차이가 유의미하지 않아 산정된 빈도유입량과 최근 발생한 극심한 가뭄의 실측유입량간 큰 차이가 발생하고 있다. 따라서 본 연구에서는 자기상관을 고려한 선형회귀모형에 근거하여 빈도유입량을 배분하는 방법을 제안한다. 또한, 앞서 서술한 네 가지 빈도유입량 방법(월빈도분석, 누가차분법, K-water Disaggregation, 자기상관 선형회귀모형)에 대한 수식적 비교를 수행하며, 국내 댐 유역에 적용 및 평가를 통해 자료 특성에 따른 적절한 빈도유입량 산정방식에 대한 기준을 제안한다. 본 연구를 통해 가뭄특성을 고려한 합리적인 댐 유입량을 산정함으로써 보다 유연한 수자원시설물의 가뭄대응이 이루어질 것으로 기대된다.

  • PDF

A Comparison of Robust Parameter Estimations for Autoregressive Models (자기회귀모형에서의 로버스트한 모수 추정방법들에 관한 연구)

  • Kang, Hee-Jeong;Kim, Soon-Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.11 no.1
    • /
    • pp.1-18
    • /
    • 2000
  • In this paper, we study several parameter estimation methods used for autoregressive processes and compare them in view of forecasting. The least square estimation, least absolute deviation estimation, robust estimation are compared through Monte Carlo simulations.

  • PDF

Estimation for random coefficient autoregressive model (확률계수 자기회귀 모형의 추정)

  • Kim, Ju Sung;Lee, Sung Duck;Jo, Na Rae;Ham, In Suk
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.257-266
    • /
    • 2016
  • Random Coefficient Autoregressive models (RCA) have attracted increased interest due to the wide range of applications in biology, economics, meteorology and finance. We consider an RCA as an appropriate model for non-linear properties and better than an AR model for linear properties. We study the methods of RCA parameter estimation. Especially we proposed the special case that an random coefficient ${\phi}(t)$ has the initial value ${\phi}(0)$ in the RCA model. In practical study, we estimated the parameters and compared Prediction Error Sum of Squares (PRESS) criterion between AR and RCA using Korean Mumps data.

An Empirical Study on the Estimation of Housing Sales Price using Spatiotemporal Autoregressive Model (시공간자기회귀(STAR)모형을 이용한 부동산 가격 추정에 관한 연구)

  • Chun, Hae Jung;Park, Heon Soo
    • Korea Real Estate Review
    • /
    • v.24 no.1
    • /
    • pp.7-14
    • /
    • 2014
  • This study, as the temporal and spatial data for the real price apartment in Seoul from January 2006 to June 2013, empirically compared and analyzed the estimation result of apartment price using OLS by hedonic price model for the problem of space-time correlation, temporal autoregressive model (TAR) considering temporal effect, spatial autoregressive model (SAR) spatial effect and spatiotemporal autoregressive model (STAR) spatiotemporal effect. As a result, the adjusted R-square of STAR model was increased by 10% compared that of OLS model while the root mean squares error (RMSE) was decreased by 18%. Considering temporal and spatial effect, it is observed that the estimation of apartment price is more correct than the existing model. As the result of analyzing STAR model, the apartment price is affected as follows; area for apartment(-), years of apartment(-), dummy of low-rise(-), individual heating (-), city gas(-), dummy of reconstruction(+), stairs(+), size of complex(+). The results of other analysis method were the same. When estimating the price of real estate using STAR model, the government officials can improve policy efficiency and make reasonable investment based on the objective information by grasping trend of real estate market accurately.

A Bayesian test for the first-order autocorrelations in regression analysis (회귀모형 오차항의 1차 자기상관에 대한 베이즈 검정법)

  • 김혜중;한성실
    • The Korean Journal of Applied Statistics
    • /
    • v.11 no.1
    • /
    • pp.97-111
    • /
    • 1998
  • This paper suggests a Bayesian method for testing first-order markov correlation among linear regression disturbances. As a Bayesian test criterion, Bayes factor is derived in the form of generalized Savage-Dickey density ratio that is easily estimated by means of posterior simulation via Gibbs sampling scheme. Performance of the Bayesian test is evaluated and examined based upon a Monte Carlo experiment and an empirical data analysis. Efficiency of the posterior simulation is also examined.

  • PDF