• Title/Summary/Keyword: 자기조직화 특성 지도

Search Result 38, Processing Time 0.027 seconds

A new cluster validity index based on connectivity in self-organizing map (자기조직화지도에서 연결강도에 기반한 새로운 군집타당성지수)

  • Kim, Sangmin;Kim, Jaejik
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.5
    • /
    • pp.591-601
    • /
    • 2020
  • The self-organizing map (SOM) is a unsupervised learning method projecting high-dimensional data into low-dimensional nodes. It can visualize data in 2 or 3 dimensional space using the nodes and it is available to explore characteristics of data through the nodes. To understand the structure of data, cluster analysis is often used for nodes obtained from SOM. In cluster analysis, the optimal number of clusters is one of important issues. To help to determine it, various cluster validity indexes have been developed and they can be applied to clustering outcomes for nodes from SOM. However, while SOM has an advantage in that it reflects the topological properties of original data in the low-dimensional space, these indexes do not consider it. Thus, we propose a new cluster validity index for SOM based on connectivity between nodes which considers topological properties of data. The performance of the proposed index is evaluated through simulations and it is compared with various existing cluster validity indexes.

Self Organized Pattern Classification and Analysis of Hydrologic Data in Juam Lake (주암호 수문자료의 자기조직화 패턴분류 및 분석)

  • Park, Sung-Chun;Jin, Young-Hoon;Roh, Kyong-Bum;Yang, Dong-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.790-794
    • /
    • 2012
  • 우리나라는 여름철에 강우가 편중되어 있고 동고서저의 산악지형으로 수자원확보가 어려운 실정이며 이는 곧 하천의 유지유량확보의 어려움과도 직결된다. 이러한 수자원확보를 위해 최근 기존 저수지 둑을 높이는 사업이 전국적으로 활발히 진행되고 있으며 이는 저수지나 댐의 수체와 같은 수자원을 보다 적극적으로 활용하여 그 가치를 높임과 동시에 하천에 대한 활용도를 높이고자 하는 데 그 목적이 있다. 따라서 저수지나 댐의 저류량에 기여하는 강우량, 유입량과 같은 수문학적 자료의 심도 있는 분석이 필요하며 수문변수들이 나타내는 복잡한 패턴에 대한 연구가 이루어져야 할 것이다. 본 연구에서는 저수지나 댐의 저류량에 직접적으로 영향을 주는 수문변수들을 전체적으로 파악하기 위해 수집된 수문자료의 각각의 특성 및 자료들 사이의 복합적인 관계를 파악하였으며 이를 위하여 패턴분류 분야에서 그 적용타당성이 입증된 자기조직화 지도(Self-Organizing Map: SOM)를 이용하였다. 본 연구의 대상지점은 섬진강 유역내에 위치한 주암호를 대상지점으로 선정하였으며 패턴분석에 사용한 수문자료의 기간은 2007~2010년까지 5년간의 월평균 자료를 활용하였다. SOM의 적용 결과, 측정수문자료에 대한 전체적인 특성을 패턴분류를 통해 분류하였으며, 각 변수에 대한 패턴별 상대성을 고려한 클러스터별 특성 및 시간적 이질성을 파악할 수 있었다. 이는 측정 자료에 대한 분석 기법개발의 일환으로 향후 수자원 확보에 대한 개발 및 정책의 기초자료로 활용될 것으로 기대된다.

  • PDF

Analysis of Non-Point Pollution Discharge Characteristics using Self-Organizing Feature Map Theory (자기조직화 특성지도 이론을 이용한 비점오염원 유출특성 분석)

  • Park, Sung-Chun;Jin, Young-Hoon;Kim, Yong-Gu;Kim, Sang-Done;Huh, Yu-Jeong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1144-1148
    • /
    • 2010
  • 오염원이 집중되는 도시지역에서의 비점오염원에 대한 관리대책은 점오염원에 비하여 미비한 실정이다. 따라서 도시 지역의 비점오염원 부하량의 합리적인 조사, 비점오염물질 저감을 위한 관리기술 개발과 아울러 정책의 개발 등이 필요하며, 도시지역에서의 장기적인 비점오염물질 유출에 관한 모니터링을 통한 비점오염물질 원단위 조사가 절실히 요구되고 있는 실정이다. 따라서 본 연구에서는 상업 및 위락시설지역의 비점오염원 유출특성을 분석하기 위해 2008년 4월부터 2009년 10월까지 실측에 의해 측정된 강우량과 유출량 자료를 이용하여 비점오염원 유출특성을 분석하였다. 또한 본 연구에서는 자기 조직화 특성지도(Self-Organizing Feature Map: SOFM) 이론을 적용하여 측정된 유출 및 수질자료에 대해 패턴분류를 수행하여 분할구역별 자료의 특성분석을 통해 초기강우 특성이 구분되어짐을 확인 할 수 있었다. 그러나 현재 축적된 자료에 대한 양적인 한계로 인해 명확한 구분이 이루어지지 않는 항목도 있었으나, 향후 지속적인 모니터링을 통해 충분한 자료가 축적될 경우 초기강우 기준을 위한 새로운 접근방법으로 제시될 수 있을 것으로 기대된다.

  • PDF

Detection of Characteristics by Pattern Classification of Water Quality and Runoff Data in a River (하천의 수질 및 유량자료의 패턴분류에 의한 특성 파악)

  • Park, Sung-Chun;Jin, Young-Hoon;Roh, Kyong-Bum;Kim, Yong-Gu;Lee, Yong-Hui
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1380-1384
    • /
    • 2010
  • 현재 환경부에서는 수질오염총량관리제를 위하여 각 단위유역의 말단지점에서 8일 간격으로 수질 및 유량을 측정하고 있으며, 이 자료들을 공개하고 있다. 이러한 양질의 자료의 활용성을 제고하기 위해서는 무엇보다도 자료의 분석을 위한 다양한 기법이 개발되고 제안되어야 한다. 따라서 본 연구에서는 수질 및 유량자료를 동시에 적용하여 두 자료 사이의 관계를 조사하고 특성을 파악하기 위하여 자기조직화 특성지도(Self-Organizing Feature Map: SOFM) 이론을 적용하였다. 시행착오법에 의해 적정한 SOFM 구조를 결정하였으며, 그 결과 $4{\times}4$ 구조의 육각형 배열을 갖는 구조를 이용하였다. SOFM에 의해 분류된 3개의 패턴 중 패턴-1은 유량자료의 크기에 의해 분류되었고, 패턴-2와 패턴-3은 BOD 농도의 크기에 따라 분류된 것으로 파악되었다. 따라서 SOFM의 적용에 의한 자료의 분류를 수행하고, 그 분류기준을 파악할 경우 SOFM의 자료 분석 도구로서의 활용성이 더욱 높아질 것으로 판단된다.

  • PDF

Extension of Self-organization for Swarm Systems to Three Dimensions (스웜시스템을 위한 자기조직화의 3D 확장)

  • Kim, Jae-Hyun;Kim, Dong-Hun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.4
    • /
    • pp.489-496
    • /
    • 2010
  • In this paper, a self-organization framework for swarm systems in three dimensions is presented. The framework uses artificial potential functions(APFs) to direct the robots toward the goal as well as to keep them in a swarm system. This research extends conventional APFs used for self-organizations in two dimension environment to three dimensions. In three dimension environment, the ground potential for the boundary surfaces that commonly appear in three dimension environments is proposed. Accordingly, the comparison between the paths without and with the ground potentials shows the necessity and effect of ground potentials. Extensive simulations are given to show the effectiveness of the extended potentials and various properties in three dimension environments.

Analysis of spatial mixing characteristics of water quality at the confluence using artificial intelligence (인공지능을 활용한 합류부에서 수질의 공간혼합 특성 분석)

  • Lee, Seo Gyeong;Kim, Dongsu;Kim, Kyungdong;Kim, Young Do;Lyu, Siwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.482-482
    • /
    • 2022
  • 하천의 합류부에서는 수질이 다른 유체가 혼합하여 합류 전과 다른 특성을 보인다. 하천의 합류부에서 수질을 효율적으로 관리하기 위해서는 수질의 공간적인 혼합 특성을 규명하는 것이 중요하다. 합류부에서 수질의 공간적인 혼합 특성을 분석하기 위해 본 연구에서는 토폴로지 데이터 분석(topological data analysis, TDA), 자기 조직화 지도(Self-Organizing Map, SOM), k-평균 알고리즘(K-means clustering algorithm) 세 가지 기법을 이용하였다. 세 가지 기법을 비교하여 어떤 알고리즘이 합류부의 수질 변화 특성을 더 뚜렷하게 나타내는지 분석하였다. 수질 변화 비교 인자들은 pH, chlorophyll, DO, Turbidity 등이 있고, 수질 인자들은 YSI를 활용해 측정하였다. 자료의 측정 지역은 낙동강과 황강이 합류하는 지역이며, 보트에 YSI 장비를 부착하고 횡단하여 측정하였다. 측정한 데이터를 R 프로그램을 통해 세 가지 기법을 적용시켜 수질 변화 비교를 분석한다. 토폴로지 데이터 분석(topological data analysis, TDA)은 거대하고 복잡한 데이터로부터 유의미한 정보를 추출하는 데 사용하고, 자기조직화지도(Self-Organizing Map, SOM) 기법은 차원 축소와 군집화를 동시에 수행한다. k-평균 알고리즘(K-means clustering algorithm) 기법은 주어진 데이터를 k개의 클러스터로 묶는 머신러닝 비지도학습에 속하는 알고리즘이다. 세 가지 방법들의 주목적은 클러스터링이다. 클러스터 분석(Cluster analysis)이란 주어진 데이터들의 특성을 고려해 동일한 성격을 가진 여러 개의 그룹으로 대상을 분류하는 데이터 마이닝의 한 방법이다. 군집화 방법들인 TDA, SOM, K-means를 이용해 합류 지역의 수질 특성들을 클러스터링하여 수질 패턴들을 분석해 하천 수질 오염을 방지할 수 있을 것이다. 본 연구에서는 토폴로지 데이터 분석(topological data analysis, TDA), 자기조직화지도(Self-Organizing Map, SOM), k-평균 알고리즘(K-means clustering algorithm) 세 가지 기법을 이용하여 합류부에서의 수질 특성을 비교하며 어떤 기법이 합류의 특성을 더욱 뚜렷하게 나타내는지 규명했다. 합류의 특성을 군집화 방법을 이용해 알게 된다면, 합류부의 수질 변화 패턴을 다른 합류 지역에서도 적용할 수 있을 것으로 기대된다.

  • PDF

Polluted Fish`s Motion Analysis Using Self-Organizing Feature Maps (자기조직화 형상지도를 이용한 오염 물고기 움직임 분석)

  • 강민경;김도현;차의영;곽인실
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.316-318
    • /
    • 2001
  • 본 논문에서는 자기조직화 형상지도(Self-organizing Feature Maps)를 사용하여 움직이는 물체에 대해 움직임의 특성을 자동으로 분석하였다. Kohonen Network는 자기조직을 형성하는 unsupervised learning 알고리즘으로서, 이 논문에서는 생태계에서의 데이터를 Patternizing하고, Clustering 하는데 사용한다. 본 논문에서 Kohonen 신경망의 학습에 사용한 데이터는 CCD 카메라로 물고기의 움직임을 추적한 좌표 데이터이며, diazinon 0.1 ppm을 처리한 물고기 점 데이터와 처리하지 않은 점 데이터를 각각 낮.밤 약 10시간동안 수집하여, \circled1처리전 낮 데이터 \circled2처리전 밤 데이터 \circled3처리전 낮 데이터 \circled4처리후 밤 데이터 각각 4개의 group으로 분류한 후, Kohonen Network을 사용하여 물고기의 행동 차이를 분석하였다.

  • PDF

Characteristics of Spatio-temporal Pattern Classification for Water Quality and Runoff Data in the Yeongsan River by the Application of SOFM (SOFM의 적용에 의한 영산강 수질 및 유량자료의 시.공간적 패턴분류 특성)

  • Park, Sung-Chun;Song, Ja-Seob;Jin, Young-Hoon;Roh, Kyong-Bum
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.189-193
    • /
    • 2011
  • 유역관리 및 수질 향상을 위해 다양한 환경정책이 시행되고 있으며, 최근 수질오염총량관리제의 시행으로 인해 보다 집중적인 유역관리와 수질 향상을 위한 노력이 배가되고 있다. 이러한 노력의 일환으로 현재 환경부 국립환경과학원에서는 수질오염총량관리를 위하여 단위유역의 말단지점에서 수질 및 유량자료에 대한 정기적인 측정을 8일 간격으로 시행하고 있으며, 데이터 베이스 및 웹시스템을 통하여 자료를 공개하고 있다(이호열, 2009). 이와 같은 자료의 측정과 축적은 그 분석을 통해 수질 개선을 위한 우선 관리 대상지점의 파악 등과 같이 수질오염총량관리제의 시행과 평가를 위해 사용될 수 있을 뿐만 아니라 새로운 환경정책의 수립에도 활용될 수 있을 것으로 기대된다. 그러나 현재 소수의 연구들에서만 상기의 자료를 단순히 활용한 결과를 찾을 수 있으며, 특히 측정된 수질 및 유량자료를 분석하여 발표한 연구결과 역시 소수에 지나지 않는다(김철겸 등, 2009). 측정 자료에 대한 분석 및 이에 따른 자료의 활용성 제고를 위해서 다양한 자료 분석 기법의 개발과 적용이 절실하다. 이러한 자료 분석 기법의 개발 및 적용에 관한 연구의 일환으로 최근 패턴분류를 위해 다양한 분야에서 활용되고 있는 자기조직화 특성 지도(Self Organizing Feature Map: SOFM)를 상기의 측정 자료에 적용한 연구 결과가 보고된 바 있다(진영훈 등, 2009; 2010). 본 연구에서는 수질오염총량관리제를 위해 측정되고 있는 수질 및 유량자료를 수집하여 자료에 내재되어 있는 시 공간적 특성을 분석하고자 하였다. 영산강 유역을 대상으로 하여, 본 유역 내의 단위유역들 중 황룡_A, 지석_A, 영본_A, 영본_B, 영본_C, 영본_D의 말단지점에서 측정되고 있는 BOD (Biochemical Oxygen Demand), TOC (Total Organic Carbon), T-N (Total Nitrogen), T-P (Total Phosphorus), SS (Suspended Solids) 수질농도 및 유량자료를 대상으로 연구를 진행하였다.

  • PDF

Detection of Landslide-damaged Areas Using Sentinel-2 Image and ISODATA (Sentinel-2 영상과 자기조직화 분류기법을 활용한 산사태 피해지 탐지 - 2020년 곡성 산사태를 사례로 -)

  • KIM, Dae-Sun;LEE, Yang-Won
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.4
    • /
    • pp.253-265
    • /
    • 2020
  • As the risk of landslide is recently increasing due to the typhoons and localized heavy rains, effective techniques for the landslide damage detection are required to support the establishment of the recovery planning. This study describes the analysis of landslide-damaged areas using ISODATA(Iterative Self-Organizing Data Analysis Technique Algorithm) with Sentinel-2 image, regarding the case of Gokseong in August 7, 2020. A total of 4.75 ha of landslide-damaged areas was detected from the Sentinel-2 image using spectral characteristics of red, NIR(Near Infrared), and SWIR(Shortwave Infrared) bands. We made sure that the satellite remote sensing is an effective method to detect the landslide-damaged areas and support the establishment of the recovery planning, followed by the field surveys that require a lot of manpower and time. Also, this study can be used as a reference for the landslide management for the CAS500-1/2(Compact Advanced Satellite) scheduled to launch in 2021 and the Korean Medium Satellite for Agriculture and Forestry scheduled to launch in 2024.

Identification of Bird Community Characteristics by Habitat Environment of Jeongmaek Using Self-organizing Map - Case Stuty Area Geumnamhonam and Honam, Hannamgeumbuk and Geumbuk, Naknam Jeongmaek, South Korea - (자기조직화지도를 활용한 정맥의 서식지 환경에 따른 조류 군집 특성 파악 - 금남호남 및 호남정맥, 한남금북 및 금북정맥, 낙남정맥을 대상으로 -)

  • Hwang, Jong-Kyeong;Kang, Te-han;Han, Seung-Woo;Cho, Hae-Jin;Nam, Hyung-Kyu;Kim, Su-Jin;Lee, Joon-Woo
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.4
    • /
    • pp.377-386
    • /
    • 2021
  • This study was conducted to provide basic data for habitat management and preservation of Jeongmaek. A total of 18 priority research areas were selected with consideration to terrain and habitat environment, and 54 fixed plots were selected for three types of habits: development, valley, and forest road and ridge. The survey was conducted in each season (May, August, and October), excluding the winter season, from 2016 to 2018. The distribution analysis of birds observed in each habitat type using a self-organizing map (SOM) classified them into a total of four groups (MRPP, A=0.12, and p <0.005). The comparative analysis of the number of species, the number of individuals, and the species diversity index for each SOM group showed that they were all the highest in group III (Kruskal-Wallis, the number species: x2 = 13.436, P <0.005; the number of individuals: x2 = 8.229, P <0.05; the species diversity index: x2 = 17.115, P <0.005). Moreover, the analysis by applying the land cover map to the random forest model to examine the index species of each group and identify the characteristics of the habitat environment showed a difference in the ratio of the habitat environment and the indicator species among the four groups. The index species analysis identified a total of 18 bird species as the indicator species in three groups except for group II. When applying the random forest model and indicator species analysis to the results of classification into four groups using the SOM, the composition of the indicator species by the group showed a correlation with the habitat characteristics of each group. Moreover, the distribution patterns and densities of observed species were clearly distinguished according to the dominant habitat for each group. The results of the analysis that applied the SOM, indicator species, and random forest model together can derive useful results for the characterization of bird habitats according to the habitat environment.