• Title/Summary/Keyword: 자기적성질

검색결과 586건 처리시간 0.029초

Effect of Cobalt Substitution on the Magnetic Properties of NiZnCu Ferrite for Multilayer Chip Inductors (Cobalt 치환된 칩인덕터용 NiZnCu Ferrite의 자기적 특성 연구)

  • An, Sung-Yong;Kim, Ic-Seob;Son, Soo-Hwan;Song, So-Yeon;Hahn, Jin-Woo;Choi, Kang-Ryong
    • Journal of the Korean Magnetics Society
    • /
    • 제20권5호
    • /
    • pp.182-186
    • /
    • 2010
  • Effect of cobalt substitution on the sintering behavior and magnetic properties of a NiZnCu ferrite was studied. $Ni_{0.36-x}Co_xZn_{0.44}Cu_{0.22}Fe_{1.98}O_4(0{\leq}x{\leq}0.04)$ ferrite was fabricated by a solid stat reaction method. It was proposed and experimentally verified that $Co^{2+}$ substituted NiZnCu ferrite was effective on improving the quality factor and magnetic properties of NiZnCu ferrites for multilayer chip inductors. The ferrite was sintered without sintering aids, at $880{\sim}920^{\circ}C$, for 2 h and the initial permeability, quality factor, density, shrinkage, saturation magnetization, and coercivity were also measured. The quality factor (Q) was increased linearly up to x = 0.01 and decreased rapidly over x = 0.01. As the cobalt content increased, the initial permeability and density of the ferrites decreases. The initial permeability of toroidal sample for $Ni_{0.35}Co_{0.01}Zn_{0.44}Cu_{0.22}Fe_{1.98}O_4$ ferrites sintered at $900^{\circ}C$ was 130 at 1 MHz and quality factor was 230.

Crystallograpbic and Magnetic Properties of $Ni_{0.65}Zn_{0.35}Cu_{0.3}Fe_{1.7}O_4$ ($Ni_{0.65}Zn_{0.35}Cu_{0.3}Fe_{1.7}O_4$의 결정학적 및 자기적 특성 연구)

  • 김우철;김삼진;김철성;이승화
    • Journal of the Korean Magnetics Society
    • /
    • 제9권3호
    • /
    • pp.136-142
    • /
    • 1999
  • $Ni_{0.65}Zn_{0.35}Cu_{0.3}Fe_{1.7}O_4$ has been studied with x-ray diffraction, Mossbauer spectroscopy, and vibrating sample magnetometer. The crystal structure is found to be a cubic spinel with the lattice constant $a_0=8.403{\AA}$. Mossbauer spectra of have been taken at various temperatures ranging from 12 K to 665 K. as the temperature increases toward $T_N$ a systematic line broadening effect in the Mossbauer spectrum is observed and interpreted to originate from different temperature dependencies of the magenetic hyperfine fields at various iron sites. Also, by using binomial distribution equation we obtained the hyperfine fields of tetrahedral[A] and octahedral sites[B], $H_{hf}(A)=470\;kOe,\; H_{hf}(B0)=495 \;kOe,\; H_{hf}(B1)=485\;kOe, \;H_{hf}(B2)=453\;kOe,\; H_{hf}(B3)=424\;kOe,\; H_{hf}(B4)=390\;kOe,\; H_{hf}(Bavr)=451\;kOe$ respectively at room temperature. The isomer shift indicates that the iron ions are ferric at tetrahedral[A] and octahedral sites[B], respectively. The Neel temperature is determined to be $T_N=665\;K$. The results of the VSM data gave the magnetic moment and coercivity values of $M_S=66\; emu/g\;and\;H_C=36\;Oe$.

  • PDF

The Study of Magnetic Structure of Ni1-xMgxFe2O4 Ferrite System by Mössbauer Spectroscopy (Mössbauer 분광법에 의한 Ni1-xMgxFe2O4 Ferrite의 자기구조 연구)

  • Yoon, In-Seop;Baek, Seung-Do
    • Journal of the Korean Magnetics Society
    • /
    • 제19권3호
    • /
    • pp.106-112
    • /
    • 2009
  • $Ni_{1-x}Mg_xFe_2O_4$ ferrite system was studied by using X-ray diffraction and $M{\ddot{o}}ssbauer$ spectroscopy. The samples were prepared by ceramic sintering method with Mg content x. The X-ray diffraction patterns of samples show phase of cubic spinel structure. There are no remarkable changes of lattice constants in $Ni_{1-x}Mg_xFe_2O_4$ ferrite system. The $M{\ddot{o}}ssbauer$ spectra were consisted of two sets of six lines, respectively, corresponding to $Fe^{3+}$ at tetrahedral and octahedral sites. The magnetic hyperfine field of samples was decreased as increasing Mg contents x in both sites and it was shown Yafet-Kittel magnetic structure. $NiFe_2O_4$ was shown complete inverse spinel, but $NiFe_2O_4$ was shown partial inverse spinel which absorption area ratio (oct/tet) was 1.449 in $M{\ddot{o}}ssbauer$ spectrum.

Mössbauer Studies of CoGa0.1Fe1.9O4 Nanoparticles (나노분말 CoGa0.1Fe1.9O4의 Mössbauer 분광학적 연구)

  • Lee, Seung-Wha
    • Journal of the Korean Magnetics Society
    • /
    • 제16권2호
    • /
    • pp.144-148
    • /
    • 2006
  • $CoGa_{0.1}Fe_{1.9}O_4$ nanoparticles have been prepared by a sol-gel method. The structural and magnetic properties have been investigated by XRD, SEM, VSM and $M\ddot{o}ssbauer$ spectroscopy. $CoGa_{0.1}Fe_{1.9}O_4$ powder that was annealed at $250^{\circ}C$ has spinel structure and behaved superparamagnetically. The estimated size of superparammagnetic $CoGa_{0.1}Fe_{1.9}O_4$ nanoparticle is around 10 nm. The hyperfine fields at 4.2 K f3r the A and B patterns were found to be 518 and 486 kOe, respectively. The blocking temperature $(T_B)$ of superparammagnetic $CoGa_{0.1}Fe_{1.9}O_4$ nanoparticle is about 250 K. The magnetic anisotropy constant of $CoGa_{0.1}Fe_{1.9}O_4$ nanoparticle was calculated to be $3.0X10^5\;ergs/cm^3$. $CoGa_{0.1}Fe_{1.9}O_4$ nanoparticle was annealed at $250^{\circ}C$ will be used to candidate for biomedicine applications as magnetic carriers.

Mossbauer Studies of the $H_2$ Reduction Effects On Magnetic Properties of Sr-Ba Substituted Hexgonal Ferrite (치환형 Sr-Ba 육방 페라이트들의 자기적 성질에 수소환원이 미치는 효과에 관한 Mossbauer 분광학적 연구)

  • 박재윤;권명회;이재광
    • Journal of the Korean Magnetics Society
    • /
    • 제9권1호
    • /
    • pp.35-40
    • /
    • 1999
  • Sr substituted materials for some barium in M-type barium ferrite powder and Co-Ti substituted Sr-Ba hexagonal ferrite powder were prepared by citrate sol-gel method and 2 MOE sol-gel method these hexaferrite particles were reduced for 1hr in the hydrogen gas. The reduction temperatures were varied in the range of 250 $^{\circ}C$ to 500 $^{\circ}C$. X-ray diffraction patterns were measured using diffractometer with Cu $K_{\Alhpa}$ radiation. Mossbauer absorption spectra were measured with a constant acceleration spectrometer. We have focused on studying the origin of increasing $M_s$ by M$\"{o}$ssbauer spectroscopy. Ferrite particles which were sintered at 105$0^{\circ}C$ were found to be typical magnetoplumbite structure and single phase. XRD patterns with varying the reduction temperatures in $Sr_{0.5}Ba_{0.5}Fe_{10}O_{19}$ indicates ferrites particles become composite hexaferrites containing $\alpha$-Fe at T_{red}=350 \;$^{\circ}C$$. On the otherhand, it was found that $Co^{2+}$ ions and $Ti^{4+}$ ions in $Sr_{0.7}Ba_{0.3}Fe_{10}CoTiO_{19}$ prevent from changing $Fe^{3+}$ ions to $\alpha$-Fe during the $H_2$ reduction. Comparing Mossbauer results with XRD results, we have determined most of $\alpha$-Fe are reduced from $4f_{vi}$ sites and 12k sites of $Fe^{3+}$ ions. These $\alpha$-Fe phase bring the induced anisotropy and increase saturation magnetization $M_s$.TEX>.

  • PDF

Crystal structures and magnetic properties of Mn-Al-M (M=Cu, Fe) alloys (Mn-Al-M(M=Cu, Fe) 합금계의 결정구조 및 자기적 성질)

  • Choe, Won-Gyu;Go, Gwan-Yeong;Yun, Seok-Gil
    • Korean Journal of Materials Research
    • /
    • 제5권1호
    • /
    • pp.22-35
    • /
    • 1995
  • In this study, crystal structures and magnetic properties of as-ast, annealed and rapidly solidified Mn-A1-M( M=Cu, Fe) alloys have been investigated. In $Mn_{0.56}Al_{0.44}$ alloys, the largest fraction of $\tau$ phase and values of magnetic properties was obtained in Mnl, i6Alo or alloy. And this alloy was used as the basic composition. In $Mn_{0.56-X}M_{X}Al_{0.44}$ alloys, when annealed, $\tau$- and $\beta$-Mn phase appeared at x< 0.08, $\tau$- and $\kappa$ phase at 0.10 $\leq x \leq$ 0.12 and $\kappa$- phase only at 0.15 $\leq x \leq$0.20 . When rapidly solidified, specimens showed similar phases as when annealed except that $\varepsilon$ phase appeared at x=0.04. In Mnu FexAlo 44 alloys, asyast specimens showed $\tau$-, $\beta$-Mn and $\gamma_2$- phase at x<0.08 and K and $\beta$-Mn phase at x>0.10. When rapidly solidified, Mn-Fe-Al specimens showed $\varepsilon$-, $\gamma_2$- and small amount of $\tau$- and $\kappa$ phase at x<0.08 and $\kappa$- phase only at 0.$\leq x \leq$0.20. All the alloys investigated were ferromagnetic. The Curie temperature of annealed specimens and rapidly solidified of Mno 5sAlu 44 alloy were -650K and -644K. Spontaneous magnetization( UII of annealed and rapidly solidified specimens were 40-45 (emu/g) and 50-52(emu/g), respectively. Remanent (M,) to saturation magnetization( Ms) ratio was -0.7. M, of rapidly solidified specimen was about 48(emu/g). Magnetic properties of $Mn_{0.56}Al_{0.44}$ alloys were found to be determined by the relative fraction of ferromagnetic r- and K- phase. When M= Cu and x=0.15, maximum as($\sigma_{0.0}$) was obtained by about 64.3 emu/g), and when M=Fe and x=0.15, 66.4( emu/g). The Curie temperature decreased as x increased.

  • PDF

A study on the crystallographic and magnetic Properties of Ce doped Garnet (Ce이 치환된 YIG garnet의 결정학적 및 자기적 성질 연구)

  • Kum, Jun-Sig;Kim, Sam-Jin;Shim, In-Bo;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • 제14권1호
    • /
    • pp.46-50
    • /
    • 2004
  • Compounds of $Y_{3-x}Ce_{x}Fe{5}O_{12}$(x=0.0, 0.1, 0.2, and 0.3) were prepared using the sol-gel method. The XRD measurements show that these samples have only a single phase of the garnet structure regardless of the amount of Ce substitution. The lattice constants of x = 0.0 and x = 0.3 were found to be a$_0$ = 12.3758 ${\pm}$0.0005 ${\AA}$ and 12.4062 ${\pm}$0.0005 ${\AA}$, respectively. The lattice constant increases linearly with increasing Ce concentration. The saturation magnetization was not changed flirty, with increasing Ce concentration, but coercivity decreased form 18.3 Oe to 5.8 Oe as x increased form x = 0.0 to x = 0.1. Mossbauer spectra of $Y_{3-x}Ce_{x}Fe{5}O_{12}$ were measured at various absorber temperatures from 13 K to Neel temperature. The Mossbauer spectra were fitted by least-squares technique with two subpatterns of Fe sites in the structure and corresponding to the 16a and 24d site. The temperature dependence of the magnetic hyperfine field in $^{57}$/Fe nuclei at the tetrahedral 240 and octahedral 16a sites were analyzed based on the Neel theory of ferrirnagnetism. The result of the Debye temperatures indicated that the inter-atomic binding force for the 24d site was larger than that for the 16a site.

Synthesis and Characterization of Magnetic Core-shell ZnFe2O4@ZnO@SiO2 Nanoparticles (Magnetic Core-shell ZnFe2O4@ZnO@SiO2 Nanoparticle의 합성과 성질에 관한 연구)

  • Yoo, Jeong-Yeol;Lee, Young-Ki;Kim, Jong-Gyu
    • Journal of the Korean Chemical Society
    • /
    • 제59권5호
    • /
    • pp.397-406
    • /
    • 2015
  • ZnO, II-VI group inorganic compound semi-conductor, has been receiving much attention due to its wide applications in various fields. Since the ZnO has 3.37 eV of a wide band gap and 60 meV of big excitation binding energy, it is well-known material for various uses such the optical property, a semi-conductor, magnetism, antibiosis, photocatalyst, etc. When applied in the field of photocatalyst, many research studies have been actively conducted regarding magnetic materials and the core-shell structure to take on the need of recycling used materials. In this paper, magnetic core-shell ZnFe2O4@SiO2 nanoparticles (NPs) have been successfully synthesized through three steps. In order to analyze the structural characteristics of the synthesized substances, X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FT-IR) were used. The spinel structure of ZnFe2O4 and the wurtzite structure of ZnO were confirmed by XRD, and ZnO production rate was confirmed through the analysis of different concentrations of the precursors. The surface change of the synthesized materials was confirmed by SEM. The formation of SiO2 layer and the synthesis of ZnFe2O4@ZnO@SiO2 NPs were finally verified through the bond of Fe-O, Zn-O and Si-O-Si by FT-IR. The magnetic property of the synthesized materials was analyzed through the vibrating sample magnetometer (VSM). The increase and decrease in the magnetism were respectively confirmed by the results of the formed ZnO and SiO2 layer. The photocatalysis effect of the synthesized ZnFe2O4 @ZnO@SiO2 NPs was experimented in a black box (dark room) using methylene blue (MB) under UV irradiation.

A Study on Distribution of Mössbauer Spectroscopy in Al Doped Garnet (Al을 치환한 Garnet의 Mössbauer분포 함수 연구)

  • Min, Byoung-Ki;Kim, Sam-Jin;Shim, In-Bo;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • 제12권1호
    • /
    • pp.1-6
    • /
    • 2002
  • Al$\^$3+/ substituted garnet Y$_3$Fe$\_$5-x/Al$\_$x/O$\_$12/ (x=0.0, 0.25, 0.5, 0.75, 1.0) was fabricated by sol-gel method. The crystallographic and magnetic properties of Y$_3$Fe$\_$5-x/Al$\_$x/O$\_$12/ have been studied with Mossbauer spectroscopy, x-ray diffraction (XRD), thermogravimetry analysis (TGA), differential thermal analysis (DTA), and vibrating samples magnetometer (VSM). The crystal structure of Y$_3$Fe$\_$5/O$\_$12/ is found to be a cubic with the lattice constant a$\_$0/= 12.381$\pm$0.005 $\AA$. The lattice constants a$\_$0/ decreases linearly from 12.381 to 12.304 A as the Al concentration (x) increases from x=0.0 to 1.0. Mossbauer spectra of measured at Y$_3$Fe$\_$5-x/A1$\_$x/O$\_$12/ various absorber temperatures of 13 to 600 K. Mossbauer spectrum for x = 0.0 is consist of well resolved two sets of six line patterns. While with increasing Al concentration outer sextet patters, which is originating from octahedral sites, broadens widely. These phenomena are interpreted in terms of random probability distributions of Fe$\^$3+/ and Al$\^$3+/ in tetrahedral site.

Study of the Nondestructive Test Method for the Embrittlement Evaluation of Nuclear Reactor Vessel Material by $M{\ddot{o}}ssbauer$ Spectroscopy ($M{\ddot{o}}ssbauer$ 분광법에 의한 원자로 용기재료의 비파괴적 중성자 조사평가에 대한 연구)

  • Jung, M.M.;Jang, K.S.;Yoo, K.B.;Kim, G.M.;Yoon, I.S;Hong, C.Y.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • 제20권3호
    • /
    • pp.183-190
    • /
    • 2000
  • The purpose of this study is to evaluate the magnetic property change of the nuclear reactor vessel steel irradiated by fast neutrons using $M{\ddot{o}}ssbauer$ spectroscopy, and the effects of the defects produced by neutron irradiation on the changes using X-ray diffraction. The specimens, fabricated with the dimension of $23mm{\times}18mm{\times}70{\mu}m$, were irradiated by neutron fluence from $10^{12}n/cm^2\;to\;10^{18}n/cm^2$ at 343K. Throughout the experiments, it is understood that (1) the X-ray diffraction measurement shows that the change of crystal nature is started at the irradiation of $10^{16}n/cm^2$ and a crystal structure has been severely damaged at the irradiation over $10^{17}n/cm^2$, (2) the analysis of the $M{\ddot{o}}ssbauer$ spectra has shown that magnetic transition phenomena occur at the irradiation over $10^{17}n/cm^2$ and (3) both methods can be utilized as nondestructive test methods for the embrittlement evaluation of materials irradiated by fast neutrons.

  • PDF