• Title/Summary/Keyword: 자기마커

Search Result 27, Processing Time 0.025 seconds

$In$ $vitro$ MRI and Characterization of Rat Mesenchymal Stem Cells Transduced with Ferritin as MR Reporter Gene (페리틴 리포터 유전자를 발현하는 백서 중간엽 줄기세포의 특성과 자기공명영상 연구)

  • Shin, Cheong-Il;Lee, Whal;Woo, Ji-Su;Park, Eun-Ah;Kim, Pan-Ki;Song, Hyun-Bok;Kim, Hoe-Suk
    • Investigative Magnetic Resonance Imaging
    • /
    • v.16 no.1
    • /
    • pp.47-54
    • /
    • 2012
  • Purpose : This study was performed to evaluate the characteristics of rat mesenchymal stem cells (RMSCs) transduced with human ferritin gene and investigate $in$ $vitro$ MRI detectability of ferritin-transduced RMSCs. Materials and Methods: The RMSCs expressing both myc-tagged human ferritin heavy chain subunit (myc-FTH) and green fluorescence protein (GFP) were transduced with lentiviurs. Transduced cells were sorted by GFP expression using a fluorescence-activated cell sorter. Myc-FTH and GFP expression in transduced cells were detected by immunofluorescence staining. The cell proliferative ability and viability were assessed by MTT assay. The RMSC surface markers (CD29+/CD45-) were analyzed by flow cytometry. The intracellular iron amount was measured spectrophotometically and the presence of ferritin-iron accumulation was detected by Prussian blue staining. $In$ $vitro$ magnetic resonance imaging (MRI) study of cell phantoms was done on 9.4 T MR scanner to evaluate the feasibility of imaging the ferritin-transduced RMSCs. Results: The myc-FTH and GFP genes were stably transduced into RMSCs. No significant differences were observed in terms of biologic properties in transduced RMSCs compared with non-transduced RMSCs. Ferritin-transduced RMSCs exhibited increased iron accumulation ability and showed significantly lower $T_2$ relaxation time than non-transduced RMSCs. Conclusion: Ferritin gene as MR reporter gene could be used for non-invasive tracking and visualization of therapeutic mesenchymal stem cells by MRI.

Development of Magnetic Wire base autonomous system using magnetic position meter (자기거리계를 이용한 Magnetic Wire 기반 자율주행시스템의 개발)

  • Kim, Geun-Mo;Yu, Yeong-Jae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.3-6
    • /
    • 2007
  • 전 세계적으로 차량의 급속한 증가로 인해 지능형교통시스템에 대한 연구가 활발히 진행 되고있다. 그중 차량의 자율주행에 관한 연구가 한 분야를 차지한다. 그리고 차량의 자율주행은 경로 인식이 기본적인 요소이다. 기존의 경로인식은 3축 자계 센서로 자석마커의 3차원의 데이터를 분석하여 인식하였다. 그러나 본 논문에서는 Magnetic Wire와 자기거리계를 이용하여 측면 이탈거리를 계측하여 주행하는 시스템을 제안한다. 그리고 기존 자율주행 차량의 시스템과 비교하고 제안하는 시스템이 저사양의 하드웨어와 간단한 알고리즘으로 자율주행이 가능함을 실험을 통해 검증하고자 한다.

  • PDF

A Sampling Strategy Considering Genetics Diversity of Abies Koreana in Yeongsil, Mt. Halla Using nSSR Makers (nSSR 마커를 이용한 한라산 영실 구상나무의 유전다양성을 고려한 표본추출전략)

  • Chae, Seung-Beom;Lim, Hyo-In
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.27-27
    • /
    • 2019
  • 본 연구는 멸종위기 아고산수종 구상나무의 보존 복원을 위한 유전다양성을 고려한 표본추출전략을 구명하는데 그 목적이 있다. 2019년 9월에 한라산 영실 집단($14,000m^2$)에서 총 152개체를 대상으로 선발된 10개의 nSSR 마커를 이용하여 유전다양성 및 공간적 유전구조를 분석하였다. 평균 유전다양성은 관찰된 대립유전자수(A)가 7.2개, 유효대립유전자수($A_e$)가 3.6개, 이형접합도 관찰치($H_o$)가 0.528, 이형접합도 기대치($H_e$)가 0.595이며, 고정지수(F)는 0.071 이었다. 조사구내 구상나무 성목 152개체는 평균 수고 3.6 m, 흉고직경 17.3 cm로 나타났다. 구상나무의 개체목간 평균거리는 3.94 m, 임분밀도는 700 본/ha 이며 개체의 공간적 분포는 임의분포 형태로 나타났다. 구상나무의 유전변이에 대한 공간적 자기상관성(spatial autocorrelation) 분석 결과, 조사구의 구상나무는 약 15 m 이내에서 분포하는 개체들 간 유전적 유사성이 있게 분포하는 것으로 나타났으며 임분밀도가 높고 수고가 낮은 특성으로 인하여 비교적 작은 유전군락이 형성된 것으로 사료된다. 결과적으로 영실의 구상나무 집단의 보존 복원을 위한 표본추출전략은 15 m의 간격을 두고 개체를 선발하는 것이 타당한 것으로 나타났다.

  • PDF

Head Motion Detection and Alarm System during MRI scanning (MRI 영상획득 중의 피험자 움직임 감지 및 알림 시스템)

  • Pae, Chong-Won;Park, Hae-Jeong;Kim, Dae-Jin
    • Investigative Magnetic Resonance Imaging
    • /
    • v.16 no.1
    • /
    • pp.55-66
    • /
    • 2012
  • Purpose : During brain MRI scanning, subject's head motion can adversely affect MRI images. To minimize MR image distortion by head movement, we developed an optical tracking system to detect the 3-D movement of subjects. Materials and Methods: The system consisted of 2 CCD cameras, two infrared illuminators, reflective sphere-type markers, and frame grabber with desktop PC. Using calibration which is the procedure to calculate intrinsic/extrinsic parameters of each camera and triangulation, the system was desiged to detect 3-D coordinates of subject's head movement. We evaluated the accuracy of 3-D position of reflective markers on both test board and the real MRI scans. Results: The stereo system computed the 3-D position of markers accurately for the test board and for the subject with glasses with attached optical reflective marker, required to make regular head motion during MRI scanning. This head motion tracking didn't affect the resulting MR images even in the environment varying magnetic gradient and several RF pulses. Conclusion: This system has an advantage to detect subject's head motion in real-time. Using the developed system, MRI operator is able to determine whether he/she should stop or intervene in MRI acquisition to prevent more image distortions.

A Study on the Detecting Underground Pipes Using Magnetic Mathod (자기장을 이용한 매설배관의 위치탐지에 관한 연구)

  • 석창성;배봉국;김정표
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.9
    • /
    • pp.63-69
    • /
    • 2003
  • As increasing underground facilities, more effective management is needed nowadays. It is important to get an accurate information of underground facilities to manage that, so some methods of detecting location - electromagnetic induction method, ground penetration radar method, sound wave method - are used to obtain the information of underground facilities. In this study, a magnetic method to detect underground facilities was developed. In the magnetic method, underground facilities are detected by a detector and the magnetic marker which is a permanent magnet and used to marking the location by attaching underground facilities. A test field was constructed for experiment with the magnetic marker, PVC pipe, and steel pipe under ground 1.5m, and a ferromagnetic detector was used for measurement. Magnetic strengths of the magnetic marker were measured by the detector at each location in the test field, and analyzed by magnetic field analysis tool in the same condition. In the result, the underground pipes of 1.5m below were detectable within the deviation $\pm$0.2m. When For applying this method, it should be considered that ferromagnetic materials around the detector could affect a measured value.

Development of autonomous system using magnetic position meter (자기거리계를 이용한 자율주행시스템의 개발)

  • Kim, Geun-Mo;Ryoo, Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.3
    • /
    • pp.343-348
    • /
    • 2007
  • Development of autonomous vehicle system that use magnetic position meter research of intelligence transportation system is progressed worldwide active by fast increase of vehicles. Among them, research about autonomous of vehicles occupies field. And autonomous of vehicles is element that path recognition is basic. Existent magnetic base autonomous system analyzes three-dimensional data of magnet marker to 3 axises magnetic sensor and recognized route. But because using Magnetic Wire and Magnetic Position Meter in treatise that see, measure side lateral error and propose system that driving. And system that compare with system of autonomous vehicles and propose wishes to verify by hardware of that specification and simple algorithm through an experiment that autonomous is available.

K-Pointer : 6DOF Location Tracking Magnetic Field Sensor-Based Interactive AR System (K-Pointer : 6DOF 위치추적 자기장 센서 기반 인터랙티브 AR 시스템)

  • Yang, Ki-Sun;Jung, Byunghe;Kim, Byungsun-Sun;Kim, Chang-Hun
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.260-262
    • /
    • 2020
  • 본 논문은 6DOF 위치기반 자기장 센서(Liverty Latus, Pollhemus)를 사용한 가상현실 방송제작에서 사용할 수 있는 인터랙티브 증강현실 시스템, K-Pointer를 제안한다. 우리는 방송에서 추적 및 인식의 정확성을 높이기 위해 Pollemus사의 6DOF 자기장기반 위치 추적 센서 리버티(수신부,소스)와 라투스(송신부,마커), 그리고 4입력 버튼장치를 결합한 인터페이스를 가지고 기존 방송용 증강현실 시스템과 통합하여 새로운 인터랙티브 증강현실 시스템을 개발하였다. 본 시스템은 방송용 증강현실 그래픽 합성 시스템(수신부)과 센서의 위치정보와 버튼 이벤트를 전송하는 시스템(송신부)으로 구성되며, 센서추적정보와 버튼이벤트 정보는 UDP로 실시간으로 수신부로 전송된다. 우리는 사용자 손의 모션과 버튼이벤트로 그래픽 정보를 인터랙티브하게 제어할 수 있게 하였다. 결과적으로 본 시스템은 기존의 합성중심의 방송용 증강현실 시스템을 사용자의 모션 기반 그래픽을 제어할 수 있는 인터랙티브 증강현실시스템으로 그 기능을 확장 시킬 수 있게 한다. 제안된 시스템은 광학식 추적을 하지 않기 때문에 조명의 변화에 영향이 없으며, 라투스 수신기가 작기 때문에 손에 쥐었을 때 거의 보이지 않고 가려도 추적이 강인하여 버튼장치를 통해 사용자가 정확한 이벤트로 직접 그래픽을 그리거나 쉽게 제어할 수 있는 장점이 있다.

  • PDF

Design and Control of an Omni-directional Cleaning Robot Based on Landmarks (랜드마크 기반의 전방향 청소로봇 설계 및 제어)

  • Kim, Dong Won;Igor, Yugay;Kang, Eun Seok;Jung, Seul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.2
    • /
    • pp.100-106
    • /
    • 2013
  • This paper presents design and control of an 'Omni-directional Cleaning Robot (OdCR)' which employs omni-wheels at three edges of its triangular configuration. Those omni-wheels enable the OdCR to move in any directions so that lateral movement is possible. For OdCR to be localized, a StarGazer sensor is used to provide accurate position and heading angle based on landmarks on the ceiling. In addition to that, ultrasonic sensors are installed to detect obstacles around OdCR's way. Experimental studies are conducted to test the functionality of the system.

An Exploration of Learning Environment for Promoting Conceptual Understanding, Immersion and Situational Interest in Small Group Learning Using Augmented Reality (증강현실을 활용한 소집단 학습에서 개념 이해 및 몰입, 상황 흥미를 촉진할 수 있는 학습 환경 탐색)

  • Shin, Seokjin;Noh, Taehee;Lee, Jaewon
    • Journal of the Korean Chemical Society
    • /
    • v.64 no.6
    • /
    • pp.360-370
    • /
    • 2020
  • This study explored the learning environment for promoting conceptual understanding, immersion, and situational interest in small group learning using augmented reality, according to the level of students' self-regulation. 95 ninth-grade students from a coed high school in Seoul participated in this study. Students were divided into a group of four and each group was randomly assigned to three learning environments that provide one marker and one smart device(1-1), two markers and two smart devices(2-2), and four markers and four smart devices(4-4) for a group. Small group learning using augmented reality was conducted for two class periods about the chemical bonding concept from the Integrated Science subject. Two-way ANOVA results revealed that students in the 4-4 learning environment scored significantly higher than those in the 1-1 or 2-2 learning environment in a conception test. Changes in the learning environment have affected students with a low level of self-regulation. In an immersion test, students in the 4-4 learning environment scored significantly higher than those in the 1-1 learning environment, and changes in the learning environment have affected students with a high level of self-regulation. As a result of situational interest test, students in the 4-4 and 2-2 learning environments scored significantly higher than those in the 1-1 learning environment, and changes in the learning environment have affected students with a low and a high level of self-regulation. Based on the results, the educational implications of the learning environment for promoting conceptual understanding, immersion, and situational interest in small group learning using augmented reality are discussed.

Emotion-on-a-chip(EOC) : Evolution of biochip technology to measure human emotion (감성 진단칩(Emotion-on-a-chip, EOC) : 인간 감성측정을 위한 바이오칩기술의 진화)

  • Jung, Hyo-Il;Kihl, Tae-Suk;Hwang, Yoo-Sun
    • Science of Emotion and Sensibility
    • /
    • v.14 no.1
    • /
    • pp.157-164
    • /
    • 2011
  • Emotion science is one of the rapidly expanding engineering/scientific disciplines which has a major impact on human society. Such growing interests in emotion science and engineering owe the recent trend that various academic fields are being merged. In this paper we propose the potential importance of the biochip technology in which the human emotion can be precisely measured in real time using body fluids such as blood, saliva and sweat. We firstly and newly name such a biochip an Emotion-On-a-Chip (EOC). EOC consists of biological markers to measure the emotion, electrode to acquire the signal, transducer to transfer the signal and display to show the result. In particular, microfabrication techniques made it possible to construct nano/micron scale sensing parts/chips to accommodate the biological molecules to capture the emotional bio-markers and gave us a new opportunities to investigate the emotion precisely. Future developments in the EOC techniques will be able to help combine the social sciences and natural sciences, and consequently expand the scope of studies.

  • PDF