• Title/Summary/Keyword: 자기구성 퍼지 모델링

Search Result 9, Processing Time 0.023 seconds

Self-Organizing Fuzzy Model for Nonlinear Processes (비선형 공정에 대한 자기구성 퍼지 모델)

  • Koh, Taek-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1846-1847
    • /
    • 2007
  • 본 논문에서는 비선형 공정의 모델링 성능을 향상시키기 위하여 퍼지 엔트로피 분석을 통해 새로운 클러스터를 생성하고, 이 클러스터를 퍼지 모델의 새로운 규칙으로 추가하는 자기구성 퍼지 모델을 제안한다. 퍼지 엔트로피가 상대적으로 큰 데이터 집합으로 새로운 클러스터를 구성하면 퍼지 모델의 애매모호한 정도가 작아져서 모델링 오차가 줄어들 가능성이 크게 된다. 제안한 방법의 유용성을 입증하기 위해 이를 Box-Jenkins의 가스로 공정에 적용하여 퍼지 규칙수의 증가에 따른 모델링 성능의 변화를 보이고, 기존의 방법에 의한 모델링 결과와 비교한다.

  • PDF

Self-Organizing Fuzzy Modeling Using Creation of Clusters (클러스터 생성을 이용한 자기구성 퍼지 모델링)

  • Koh, Taek-Beom
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.4
    • /
    • pp.334-340
    • /
    • 2002
  • This paper proposes a self-organizing fuzzy modeling which can create a new hyperplane-shaped cluster by applying multiple regression to input/output data with relatively large fuzzy entropy, add the new cluster to fuzzy rule base and adjust parameters of the fuzzy model in repetition. Tn the coarse tuning, weighted recursive least squared algorithm and fuzzy C-regression model clustering are used and in the fine tuning, gradient descent algorithm is used to adjust parameters of the fuzzy model precisely And learning rates are optimized by utilizing meiosis-genetic algorithm. To check the effectiveness and feasibility of the suggested algorithm, four representative examples for system identification are examined and the performance of the identified fuzzy model is demonstrated in comparison with that of the conventional fuzzy models.

Self-Organizing Fuzzy Modeling using Creation of Clusters (클러스터 생성을 이용한 자기구성 퍼지 모델링)

  • 고택범
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.05a
    • /
    • pp.245-251
    • /
    • 2002
  • 본 논문에서는 상대적으로 큰 퍼지 엔트로피를 갖는 입력-출력 데이터 집단에 다중 회귀 분석을 적용하여 다차원 평면 클러스터를 생성하고, 이 클러스터를 새로운 퍼지 모델의 규칙으로 추가한 후 퍼지 모델 파라미터의 개략 동조와 정밀 동조를 수행하는 자기구성 퍼지 모델링을 제안한다. Weighted recursive least squared 알고리즘과 fuzzy C-regression model 클러스터링에 의해 퍼지 모델의 파라미터를 개략적으로 동조한 후 gradient descent 알고리즘에 의해 파라미터를 정밀 동조하면서 감수분열 유전 알고리즘을 이용하여 최적의 학습률을 탐색한다. 그리고 자기 구성 퍼지 모델링 기법을 이용하여 Box-Jenkins의 가스로 데이터, 다변수비선형 정적 함수의 데이터와 하수 처리 활성오니 공정의 모델링을 수행하고, 기존의 방법에 의한 모델링 결과와 비교하여 그 성능을 입증한다.

  • PDF

Fuzzy Modeling using Self-Organizing Clustering (자기-구성 클러스터링에 의한 퍼지 모델링)

  • Kim, Sung-Suk;Jeon, Byung-Suk;Kim, Ju-Sik;Ryu, Jeong-Woong;Kim, Sung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2513-2515
    • /
    • 2004
  • 본 논문에서는 주어진 데이터를 나누어 부분공간으로 구성하여 특성을 구분하거나 또다른 모델의 입력 파라미터로 제공하는 방법 중 하나의 클러스터링의 성능 개선과 이를 이용하여 퍼지 모델링을 실시하였다. 일반적인 클러스터링에서 볼 수 있는 초기 파라미터 결정 문제와 알고리즘의 수렴 문제에 대하여 문제점을 개선하였으며 클러스터링에 의하여 추정된 파라미터를 퍼지 모델에 적용하였다. 또한 일반적인 퍼지 모델의 경우 각 입력의 차원이 서로 독립적으로 구성되어 있어 데이터에서 존재하는 입력간의 상관관계를 고려하지 않았다. 제안된 퍼지 모델에서는 클러스터링에서 추정된 입력간의 상관관계(공분산)까지 고려하여 모델의 성능을 개선하였다. 제안된 논문의 유용성을 시뮬레이션을 통하여 보이고자 한다.

  • PDF

Robust Fuzzy Controller for Active Magnetic Bearing System with 6-DOF (6 자유도를 갖는 능동 자기베어링 시스템의 강인 퍼지 제어기)

  • Sung, Hwa-Chang;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.3
    • /
    • pp.267-272
    • /
    • 2012
  • This paper propose the implementation of robust fuzzy controller for controlling an active magnetic bearing (AMB) system with 6 degree of freedom (DOF). A basic model with 6 DOF rotor dynamics and electromagnetic force equations for conical magnetic bearings is proposed. The developed model has severe nonlinearity and uncertainty so that it is not easy to obtain the control objective. For solving this problem, we use the Takagi-Sugeno (T-S) fuzzy model which is suitable for designing fuzzy controller. The control object in the AMB system enables the rotor to rotate without any phsical contact by using magnetic force. In this paper, we analyze the nonlinearity of the active magnetic bearing system by using fuzzy control algorithm and desing the robust control algorithm for solving the parameter variation. Simulation results for AMB are demonstrated to visualize the feasibility of the proposed method.

Robust Stability Analysis of Hybrid Magnetic Bearing System (하이브리드 자기베어링 시스템의 강인 안정도 해석)

  • Sung, Hwa-Chang;Park, Jin-Bae;Tark, Myung-Hwan;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.372-377
    • /
    • 2011
  • This paper propose the robust stability algorithm for controlling a hybrid magnetic bearing system. The control object in the magnetic bearing system enables the rotor to rotate without any physical contact by using magnetic force. Generally, the system dynamics of the magnetic bearing system has severe nonlinearity and uncertainty so that it is not easy to obtain the control objective. For solving these problems, we propose the fuzzy modelling and robust control algorithm for hybrind magnetic bearing system. The sufficient conditions for robust controller are obtained in terms of solutions to linear matrix inequalities (LMIs). Simulation results for HMB are demonstrated to visualize the feasibility of the proposed method.

Neuro-Fuzzy Modeling based on Self-Organizing Clustering (자기구성 클러스터링 기반 뉴로-퍼지 모델링)

  • Kim Sung-Suk;Ryu Jeong-Woong;Kim Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.6
    • /
    • pp.688-694
    • /
    • 2005
  • In this Paper, we Propose a new neuro-fuzzy modeling using clustering-based learning method. In the proposed clustering method, number of clusters is automatically inferred and its parameters are optimized simultaneously, Also, a neuro-fuzzy model is learned based on clustering information at same time. In the previous modelling method, clustering and model learning are performed independently and have no exchange of its informations. However, in the proposed method, overall neuro-fuzzy model is generated by using both clustering and model learning, and the information of modelling output is used to clustering of input. The proposed method improve the computational load of modeling using Subtractive clustering method. Simulation results show that the proposed method has an effectiveness compared with the previous methods.

Self-Organizing Fuzzy Modeling Based on Hyperplane-Shaped Clusters (다차원 평면 클러스터를 이용한 자기 구성 퍼지 모델링)

  • Koh, Taek-Beom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.12
    • /
    • pp.985-992
    • /
    • 2001
  • This paper proposes a self-organizing fuzzy modeling(SOFUM)which an create a new hyperplane shaped cluster and adjust parameters of the fuzzy model in repetition. The suggested algorithm SOFUM is composed of four steps: coarse tuning. fine tuning cluster creation and optimization of learning rates. In the coarse tuning fuzzy C-regression model(FCRM) clustering and weighted recursive least squared (WRLS) algorithm are used and in the fine tuning gradient descent algorithm is used to adjust parameters of the fuzzy model precisely. In the cluster creation, a new hyperplane shaped cluster is created by applying multiple regression to input/output data with relatively large fuzzy entropy based on parameter tunings of fuzzy model. And learning rates are optimized by utilizing meiosis-genetic algorithm in the optimization of learning rates To check the effectiveness of the suggested algorithm two examples are examined and the performance of the identified fuzzy model is demonstrated via computer simulation.

  • PDF

Modeling of Self-Constructed Clustering and Performance Evaluation (자기-구성 클러스터링의 모델링 및 성능평가)

  • Ryu Jeong woong;Kim Sung Suk;Song Chang kyu;Kim Sung Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.6C
    • /
    • pp.490-496
    • /
    • 2005
  • In this paper, we propose a self-constructed clustering algorithm based on inference information of the fuzzy model. This method makes it possible to automatically detect and optimize the number of cluster and parameters by using input-output data. The propose method improves the performance of clustering by extended supervised learning technique. This technique uses the output information as well as input characteristics. For effect the similarity measure in clustering, we use the TSK fuzzy model to sent the information of output. In the conceptually, we design a learning method that use to feedback the information of output to the clustering since proposed algorithm perform to separate each classes in input data space. We show effectiveness of proposed method using simulation than previous ones