• Title/Summary/Keyword: 자기공명영상 코일

Search Result 92, Processing Time 0.027 seconds

Evidence of Cortical Reorganization in a Monoparetic Patient with Cerebral Palsy Detected by Combined Functional MRI and TMS

  • Kwon, Yong-Hyun;Jang, Sung-Ho;Lee, Mi-Young;Byun, Woo-Mok;Cho, Yoon-Woo;Ahn, Sang-Ho
    • Journal of Yeungnam Medical Science
    • /
    • v.22 no.1
    • /
    • pp.96-103
    • /
    • 2005
  • The motor recovery mechanism of a 21-year-old male monoparetic patient with cerebral palsy, who had complained of a mild weakness on his right hand since infancy, was examined using functional Magnetic Resonance Imaging (fMRI) and Transcranial Magnetic Stimulation (TMS). The patient showed mild motor impairment on the right hand. MRI located the main lesion on the left precentral knob of the brain. fMRI was performed on this patient as well as 8 control subjects using the Blood Oxygen Level Dependent technique at 1.5 T with a standard head coil. The motor activation task consisted of finger flexionextension exercises at 1 Hz cycles. TMS was carried out using a round coil. The anterior portion of the coil was applied tangentially to the scalp at a 1.0 cm separation. Magnetic stimulation was carried out with the maximal output. The Motor Evoked Potentials (MEPs) from both Abductor Pollicis Brevis muscles (APB) were obtained simultaneously. fMRI revealed that the unaffected (right) primary sensori-motor cortex (SM1), which was centered on precentral knob, was activated by the hand movements of the control subjects as well as by the unaffected (left) hand movements of the patient. However, the affected(right) hand movements of the patient activated the medial portion of the injured precentral knob of the left SM1. The optimal scalp site for the affected (right) APB was located at 1 cm medial to that of the unaffected (left) APB. When the optimal scalp site was stimulated, the MEP characteristics from the affected (right) APB showed a delayed latency, lower amplitude, and a distorted figure compared with that of the unaffected (left) APB. Therefore, the motor function of the affected (right) hand was shown to be reorganized in the medial portion of the injured precentral knob.

  • PDF

Design and Implementation of Microstrip Quadrature Coupler and High Power Transmitting/Receiving Switch Using Dynamic Loading Technique for 1-Tesal MRI System (동적 부하 기술을 이용한 1-Tesla 자기공명 영상 시스템용 마이크로 스트립 quadrature coupler 및 고출력 송수신 스위치의 설계 및 제작)

  • 류웅환;이미영;이흥규;이황수;김정호
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.3
    • /
    • pp.1-11
    • /
    • 1999
  • It is now common practice to utilize the quadrature RF coils to improve the signal-to-noise ratio (SNR) in the Magnetic Resonance Imaging (MRI) System. In addition, to make such an available SNR improvement, it is mandatory to use a well-designed quadrature coupler, which facilitates a perfect 3-dB coupling and quadrature-phase shift. However, the four ports matching condition has to be well considered during the RF excitation and the signal detection period. This work investigates the effects of such a mismatching condition (especially, due to patient) from the analysis, simulation, and real implementation and firstly proposes dynamic loading technique for a quadrature coupler and transmitting/receiving switch module to minimize a patient mismatching and enhance a system reliability. Also, we designed and implemented the quadrature coupler and transmitting/receiving switch module using microstrip. As a result, the SNR of our MRI system using the microstrip quadrature coupler and transmitting/receiving switch module with dynamic load increases 3 dB compared with the old one using USA quadrature switch. Also, the power capability of quadrature coupler and transmitting/receiving switch module is 5-kw peak power. Considering power loss and reduction of size, we used a RT/duroid 6010 substrate with high permittivity and for simulation we use Compact Software.

  • PDF

Suggested Protocol for Efficient Medical Image Information Exchange in Korea: Breast MRI (효율적 의료영상정보교류를 위한 프로토콜 제안: 유방자기공명영상)

  • Park, Ji Hee;Choi, Seon-Hyeong;Kim, Sungjun;Yong, Hwan Seok;Woo, Hyunsik;Jin, Kwang Nam;Jeong, Woo Kyoung;Shin, Na-Young;Choi, Moon Hyung;Jung, Seung Eun
    • Journal of the Korean Society of Radiology
    • /
    • v.79 no.5
    • /
    • pp.254-258
    • /
    • 2018
  • Purpose: Establishment of an appropriate protocol for breast magnetic resonance imaging (MRI) in the study of image quality standards to enhance the effectiveness of medical image information exchange, which is part of the construction and activation of clinical information exchange for healthcare informatization. Materials and Methods: The recommended protocols of breast and MRI scans were reviewed and the questionnaire was prepared by a responsible researcher. Then, a panel of 9 breast dedicated radiologists was set up in Korea. The expert panel conducted a total of three Delphi agreements to draw up a consensus on the breast MRI protocol. Results: The agreed breast MRI recommendation protocol is a 1.5 Tesla or higher device that acquires images with prone position using a breast dedicated coil and includes T2-weighted and pre-contrast T1-weighted images. Contrast enhancement images are acquired at least two times, and include 60-120 seconds between images and after 4 minutes. The contrast enhancement T1-weighted image should be less than 3 mm in thickness, less than 120 seconds in temporal resolution, and less than $1.5mm^2$ in-plane pixel resolution. Conclusion: The Delphi agreement of the domestic breast imaging specialist group has established the recommendation protocol of the effective breast MRI.

Development of Solenoid RF Coil for Animal Imaging in 3T High Magnetic Field MRI (고자장 3T MRI 장비에서 동물영상을 위한 솔레노이드 RF코일 개발)

  • Lee, Hong-Seok;Woo, Dong-Cheol;Min, Kwang-Hong;Kim, Yong-Kwon;Lee, Heung-Kyu;Choe, Bo-Young
    • Investigative Magnetic Resonance Imaging
    • /
    • v.11 no.1
    • /
    • pp.20-26
    • /
    • 2007
  • Purpose : The purpose of the present study was to develop and optimize solenoid coil for animal- model in 3 T MRI system and investigate and compare with the birdcage coil concerning the image quality with the various parameters such as SNR and Q-factor. Materials and Methods : Solenoid coil for animal-model was made on the acryl structure (diameter 4 cm, length 10 cm) 3 times-winding cooper tape of width 2 cm, thickness 0.05 cm and length 10 cm with 2 cm interval between winded tapes. Capacitors from 2 pF to 100 pF were used, and the solenoid coil was designed for receiver only coil. Results : SNR of the developed solenoid was 985 in CuSO4 0.7 g/L and 995 in rat experiment. Q-factor was 84-89 in unloaded condition and 203-206 in loaded condition. Conclusion : The resolution of the image obtained from solenoid was relatively higher than that of the conventional birdcage coil. In addition, the homogeneity of RF field by coil simulation was significantly excellent. The present study demonstrated that the solenoid coil could be useful to obtain small animal images with better contrast, resolution, visibility than images from birdcage.

  • PDF

A research on improving signal to noise ratio for magnetic resonance imaging through increasing filling factor inside surface coil (자기공명 검사시 코일 내 filling factor 증가를 통한 신호대 잡음비의 향상에 관한 연구)

  • Choi, Kwan-Woo;Son, Soon-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5299-5304
    • /
    • 2012
  • MRI signals are significantly reduced by the magnetic field inhomogenity result from human body itself being consisted of various materials like air, fat, muscle, bone and blood vessels. In this study we used silicon which is tissue equivalent to compensate wound body shapes. Objects were eight adults who do not have any special symptoms. Feet were scanned because of their complicated structures and consequently signal reduction occurs a lot. Thirty images were acquired from the middle of arcus pedis longitudinalis including five distal phalanges parallel to the line connecting metatarsal bone and phalanges. SNR data from bones and soft tissues were compared before and after sticking silion between toes and paired t test was performed. It was came out that SNR data from bone and soft tissue were both significantly higher after applying silicon on both T1 and T2 weighted images and it was statistically meaningful having positive corelation. As a result, this study dramatically increases SNR without affecting object by increasing the object volume inside the surface coil.

The Preliminary Study of Odorant Induced fMRI using an Apparatus of Smell Stimulation Controller (후취자극 제어장치를 이용한 후각 fMRI의 기초연구)

  • 강원석;백문영;이현용;신운재;정순철;민병찬;김재형;은충기;문치웅
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.2
    • /
    • pp.157-163
    • /
    • 2001
  • 본 논문에서는 후취자극 제어장치를 이용하여 후각자극에 대한 인간의 뇌의 활성화 영역을 뇌기능자기공명영상(functional magnetic resonance imaging : fMRI)장치로 측정 또는 가시화하고 이의 임상적용에 대한 기초자료를 마련하고자 하였다. 우선 후각에 이상이 없고 코 수술 경험이 없는 오른손잡이 피험자 4명을 대상으로 5번에 걸쳐 Echo Plannar Imaging(EPI)에 의한 혈액산소농도의존(blood oxygen level dependent : BOLD)법을 이용하여 후각자극에 의한 뇌기능자기공명영상 실험을 수행하였다. 후각자극은 MRI 장치에서 사용할 수 있도록 제작된 후취제어장치를 사용하였으며, 제시된 향은 천연 향의 일종인 lavender-like fragrance를 사용하였다. 향의 제시는 후각의 피로도를 감안하여 3회의 휴식기관과 2회의 자극기간을 각 30초씩 번갈아 시행하였으며, 동시에 5초 간격으로 각 절편 당 30 영상을 연속적으로 획득하였다. Correlation법으로 0.4∼0.7의 문턱치(threshold)범위에서 통계 처리된 뇌의 활성화 영상은 EPI영상과 같은 부위의 T1 강조영상에 overlapping 시켰다. 호흡에 의한 artifact를 제거하기 위해 실험실에 만든 장치로 호흡을 측정하여 post-processing 할 때 반영하였다. 이렇게 얻어진 fMRI 영상의 신호변화를 관찰하여 활성 영역의 위치를 분석하였다. 그 결과 후각자극에 의해 뇌의 전두엽 피질(frontal cortex), 소뇌(cerebellum), 그리고 뇌교(pons)에서 활성화된 신호를 발견할 수 있었다. 또한, 측두엽(temporal lobe)과 뇌섬(insula)에서도 의미 있는 신호가 관찰되었다. 그러나, 일차 후각영역인 piriform cortex와 entorhinal cortex, amygdaloid complex, 그리고 이차후각영역인 orbitofrontal cotex에서는 그다지 많은 빈도로 신호가 발견되지 않았다. 결론적으로 BOLD법을 이용한 fMRI에 의하여 후각자극에 대한 뇌의 활성화영역을 관찰할 수 있었으며, 후각자극에 대한 뇌의 기능을 연구하는데 있어서 중요한 정량적 자료를 제공할 수 있다는 점을 확인할 수 있었다.

  • PDF

A New Quadrature Breast RF Coil for MRI (새로운 자기공명영상촬영용 Quadrature Breast RF 코일)

  • Kim, S.K.;Yang, Y.J.;Lee, D.R.;Yi, Y.;Ahn, C.B.;Oh, C.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.291-293
    • /
    • 1997
  • A new quadrature RF coil is designed for Breast MR Imaging. Quadrature RF coils for MRI have been useful to improve the signal-to-noise ratio (SNR) by "$\sqrt{2}$" using two orthogonal RF coils in combination. A modified Breast Quadrature coil is designed. It is a modified type of the high-pass birdcage coil. To reduce the field distortion, by using current feeding, the field pattern is optimized to achieve a quadrature circularly-polarized field pattern. The coil has been implemented for receive-only mode, and tested by phantom imaging. The experimental results show the utility of the proposed RF coil.

  • PDF

A study on Evaluating Validity of SNR Calculation Using a Conventional Two Region Method in MR Images Applied a Multichannel Coil and Parallel Imaging Technique (다중채널코일과 병렬영상기법 이용 시 두영역측정법을 사용한 신호대잡음비 측정의 문제점)

  • Choi, Kwan-Woo;Son, Soon-Yong;Min, Jung-Whan;Kwon, Kyung-Tae;Yoo, Beong-Gyu;Lee, Jong-Seok
    • Journal of radiological science and technology
    • /
    • v.38 no.4
    • /
    • pp.403-410
    • /
    • 2015
  • The purpose of this study was to investigate the problems of a signal to noise ratio measurement using a two region measurement method that is conventionally used when using a multi-channel coil and a parallel imaging technique. As a research method, after calculating the standard SNR using a single channel head coil of which coil satisfies three preconditions when using a two region measurement method, we made comparisons and evaluations after calculating an SNR by using a two region measurement method of which method is problematic because it is used without considering the methods recommended by reputable organizations and the preconditions at the time of using a multi-channel coil and a parallel imaging technique. We found that a two region measurement method using a multi-channel coil and a parallel imaging technique shows the highest relative standard deviation, and thus shows a low degree of precision. In addition, we found out that the difference of SNR according to ROI location was very high, and thus a spatial noise distribution was not uniform. Also, 95% confidence interval through Blend-Altman plot is the widest, and thus the conformity degree with a two region measurement method using the standard single channel head coil is low. By directly comparing an AAPM method, which serves as a standard of a performance evaluation test of a magnetic resonance imaging device under the same image acquisition conditions, an NEMA method which can accurately determine the noise level in a signal region and the methods recommended by manufacturers of a magnetic resonance imaging device, there is a significance in that we quantitatively verified the inaccurate problems of a signal to noise ratio using a two region measurement method when using a multi-channel coil and a parallel imaging technique of which method does not satisfy the preconditions that researchers could overlook.

Analysis of the Bird-cage Receiver Coil of a MRI System Employing a Equivalent Circuit Model Based on a Transmission Matrix (전송행렬 기반 등가 회로 모델을 이용한 자기공명영상 장치용 새장형 수신 코일 해석)

  • Kim, Hyun Deok
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.7
    • /
    • pp.1024-1029
    • /
    • 2017
  • A novel analytic solution has been derived for the bird-cage receiver coil of a magnetic resonance imaging (MRI) system, which is widely used in 3-dimensional medical imaging, by transforming the coil into an equivalent circuit model by using a transmission matrix-based circuit analysis. The bird-cage coil composed of N legs is divided into a cell for which input impedance is to be analyzed and the remaining N-1 cells, and then a transmission matrix corresponding to the N-1 cells is converted into a circuit to transform the 3-dimensional bird-cage coil into the 2-dimensional equivalent circuit model, which is suitable to derive the analytic solution for the input impedance. The proposed method derives directly the analytic solution for the input impedance at an arbitrary point of the coil unlike the conventional analytic solution of a bird-cage coil, so that it can be used not only for resonance frequency calculations but also for various coil characteristics analyses. Since the analytic solution agreed well with the results of computational simulations, it can be useful for the impedance matching of a coil and the analysis and the design of a multi-tune bird-cage coil.

FPCB-based Birdcage-Type Receiving Coil Sensor for Small Animal 1H 1.5 T Magnetic Resonance Imaging System (소 동물 1H 1.5 T 자기공명영상 장치용 유연인쇄기판 기반 새장형 수신 코일 센서)

  • Ahmad, Sheikh Faisal;Kim, Hyun Deok
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.245-250
    • /
    • 2017
  • A novel method to implement a birdcage-type receiving coil sensor for use in a magnetic resonance imaging(MRI) system has been demonstrated employing a flexible printed circuit board (FPCB) fabrication technique. Unlike the conventional methods, the two-dimensional shape of the coil sensor is first implemented as a FPCB and then it is attached to the surface of a cylindrical supporting structure to implement the three-dimensional birdcage-type coil sensor. The proposed method is very effective to implement object-specific MRI coil sensors especially for small animal measurements in research and preclinical applications since the existing well-developed FPCB-based techniques can easily meet the requirements on accuracies and costs during coil implement process. The performances of the coil sensor verified through $^1H$ 1.5T MRI measurements for small animals and it showed excellent characteristics by providing a high spatial precision and a high signal-to-noise ratio.