• 제목/요약/키워드: 입 검출

검색결과 183건 처리시간 0.058초

얼굴 특징 추적을 이용한 인터페이스 구현 (Interface Implementation using Facial Feature Tracking)

  • 신윤희;강신국;김은이
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 한국컴퓨터종합학술대회 논문집 Vol.33 No.1 (B)
    • /
    • pp.274-276
    • /
    • 2006
  • 본 논문은 얼굴 특징 추적을 이용한 새로운 인터페이스를 제안한다. 눈의 움직임만으로 구현된 기존의 시스템은 마우스 클릭 이벤트에 걸리는 waiting time으로 인해 속도 개선이 필요했다. 이를 위해서 본 논문에서는 눈의 움직임 뿐 아니라 입의 움직임도 인식하여 사용자의 요구를 처리할 수 있는 시스템을 개발한다. 제안된 시스템은 얼굴 검출 모듈, 눈 검출 모들, 입 검출 모듈, 얼굴 특징 추적 모듈, 마우스 제어모듈의 5 가지 모듈로 구성되어 있다. 먼저, 피부색 모델과 연결 성분 분석을 이용하여 얼굴을 검출하고 신경망 기반의 분류기와 에지 검출기를 이용하여 검출된 얼굴 영역에서 눈과 입을 찾는다. 이후 프레임에서는 mean-shift 알고리즘과 템플릿 매칭을 이용하여 눈과 입이 정확하게 추적되어 눈의 움직임으로 마우스의 포인트를 움직이고 입의 움직임으로 메뉴나 아이콘을 클릭하게 된다. 제안된 시스템의 효율성을 검증하기 위해서 웹 브라우저의 인터페이스로 활용하였다. 25명의 사용자에 대해 실험한 결과는 제안된 시스템이 보다 편리하고 친숙한 인터페이스로 활용될 수 있다는 것을 보여주었다.

  • PDF

발화구간 검출을 위해 학습된 CNN 기반 입 모양 인식 방법 (Lip Reading Method Using CNN for Utterance Period Detection)

  • 김용기;임종관;김미혜
    • 디지털융복합연구
    • /
    • 제14권8호
    • /
    • pp.233-243
    • /
    • 2016
  • 소음환경에서의 음성인식 문제점으로 인해 1990년대 중반부터 음성정보와 영양정보를 결합한 AVSR(Audio Visual Speech Recognition) 시스템이 제안되었고, Lip Reading은 AVSR 시스템에서 시각적 특징으로 사용되었다. 본 연구는 효율적인 AVSR 시스템을 구축하기 위해 입 모양만을 이용한 발화 단어 인식률을 극대화하는데 목적이 있다. 본 연구에서는 입 모양 인식을 위해 실험단어를 발화한 입력 영상으로부터 영상의 전처리 과정을 수행하고 입술 영역을 검출한다. 이후 DNN(Deep Neural Network)의 일종인 CNN(Convolution Neural Network)을 이용하여 발화구간을 검출하고, 동일한 네트워크를 사용하여 입 모양 특징 벡터를 추출하여 HMM(Hidden Markov Mode)으로 인식 실험을 진행하였다. 그 결과 발화구간 검출 결과는 91%의 인식률을 보임으로써 Threshold를 이용한 방법에 비해 높은 성능을 나타냈다. 또한 입모양 인식 실험에서 화자종속 실험은 88.5%, 화자 독립 실험은 80.2%로 이전 연구들에 비해 높은 결과를 보였다.

얼굴특징 평가함수를 이용한 얼굴인식 알고리즘 (Face Recognition Algorithm Using Face Feature Evaluation Function)

  • 김정훈;이응주
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2003년도 춘계학술발표대회논문집
    • /
    • pp.484-487
    • /
    • 2003
  • 본 논문에서는 CCD 카메라로부터 입력된 얼굴영상에서 피부색상 정보를 이용하여 얼굴을 검출하고 얼굴특징자인 눈, 코, 입의 얼굴특징 벡터를 추출한 후, 벡터들로부터 특징 평가함수를 적용하여 개인의 얼굴을 인식하는 알고리즘을 제안하였다. 제안한 논문에서는 입력 영상에서 대하여 얼굴 피부색의 정보와 명암도 정보를 동시에 사용하여 얼굴영역을 검출한 후, 검출한 얼굴 영역에서 특징점인 눈, 코, 입 등을 추출한 다음, 각 특징 점들에 대한 기하학적 위치특성과 상관성을 이용한 얼굴특징 평가함수를 구성하였다. 제안한 알고리즘으로 230 장의 얼굴영상에 대하여 실험에 적용한 결과 얼굴검출 효율과 인식 성능을 개선할 수 있었다.

  • PDF

색상요소를 고려한 얼굴검출에 대한 연구 (A study of face detection using color component)

  • 이정하;강진석;최연성;김장형
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2002년도 추계종합학술대회
    • /
    • pp.240-243
    • /
    • 2002
  • 본 논문에서는 칼라 이미지에서 색상 요소를 기초로 하여 얼굴영역을 추출하고 얼굴의 특징요소를 추출하는 방법을 제안한다. 얼굴 영역을 추출하기 위하여 일반적인 얼굴색상분포를 이용하여 색상변환을 하였다. 얼굴 특성요소를 찾기 위하여 윤곽선검출을 이용하였다. 얼굴영역의 상단부분에서 눈의 요소를 찾고, 눈과 입의 지정학적 위치를 이용하여 입의 후보영역을 지정하고 입을 찾도록 하였다. 검색영역을 좁혀 계산량을 줄임으로서 탐색시간을 줄일 수 있고, 일반적인 얼굴색상분포를 이용하여 얼굴 영역을 검출함으로서 얼굴표정, 얼굴색변화, 기울짐에 대해서도 얼굴영역을 검출할 수 있었다.

  • PDF

얼굴 구성요소 검출을 통한 효율적인 얼굴 잡티 제거 (Efficient Facial Blemishes Removal with Face Feature Detection)

  • 박호준;차의영
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2016년도 제54차 하계학술대회논문집 24권2호
    • /
    • pp.55-58
    • /
    • 2016
  • 본 논문은 사람의 얼굴 영상에서 잡티를 제거하는 방법을 제안한다. 먼저 입력받은 영상에서 Haar-like Feature 기반 Adaboost 알고리즘과 색상 정보를 이용하여 얼굴 영역을 검출한다. 검출된 얼굴 영역에서 잡티를 제거하기 위해서는 먼저 눈, 코, 입, 눈썹과 같은 얼굴의 주요부위를 검출하고 이 영역을 제외한 순수 피부 영역에 잡티 검출 알고리즘을 적용해야한다. 사람의 얼굴은 미세하게 명암도 차이가 나는 부분이 많기 때문에 가우시안 스무딩을 적용한 후, 그래프 기반 분할 방법을 사용하여 눈, 입, 눈썹을 분할한다. 코 영역은 각 픽셀에 대해 인접픽셀과의 R 채널의 차이값을 가중치 맵으로 만들고 가중치 맵을 분석하여 영역을 분할한다. 분할된 영역에 사람 얼굴의 기하학적 위치 정보를 이용하여 주요부위를 검출한다. 얼굴의 주요부위를 검출하고 그 부위를 제외한 피부 영역에 잡티 검출 알고리즘을 적용한다. 잡티는 Edge와 색상 정보를 이용하여 검출하고, 잡티주변을 검사하여 잡티가 아닌 깨끗한 피부를 잡티 영역에 복사하여 채워나가는 방식으로 피부 영역을 복원한다.

  • PDF

표정 인식을 위한 얼굴의 표정 특징 추출 (Facial Expression Feature Extraction for Expression Recognition)

  • 김영일;김정훈;홍석근;조석제
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2005년도 추계종합학술대회
    • /
    • pp.537-540
    • /
    • 2005
  • 본 논문에서는 사람의 감정, 건강상태, 정신상태등 다양한 정보를 포함하고 있는 웃음, 슬픔, 졸림, 놀람, 윙크, 무표정 등의 표정을 인식하기 위한 표정의 특징이 되는 얼굴의 국부적 요소인 눈과 입을 검출하여 표정의 특징을 추출한다. 표정 특징의 추출을 위한 전체적인 알고리즘 과정으로는 입력영상으로부터 칼라 정보를 이용하여 얼굴 영역을 검출하여 얼굴에서 특징점의 위치 정보를 이용하여 국부적 요소인 특징점 눈과 입을 추출한다. 이러한 특징점 추출 과정에서는 에지, 이진화, 모폴로지, 레이블링 등의 전처리 알고리즘을 적용한다. 레이블 영역의 크기를 이용하여 얼굴에서 눈, 눈썹, 코, 입 등의 1차 특징점을 추출하고 누적 히스토그램 값과 구조적인 위치 관계를 이용하여 2차 특징점 추출 과정을 거쳐 정확한 눈과 입을 추출한다. 표정 변화에 대한 표정의 특징을 정량적으로 측정하기 위해 추출된 특징점 눈과 입의 눈과 입의 크기와 면적, 미간 사이의 거리 그리고 눈에서 입까지의 거리 등 기하학적 정보를 이용하여 6가지 표정에 대한 표정의 특징을 추출한다.

  • PDF

얼굴 영역 추적과 입 검출을 이용한 AAM 얼굴 모양 파라미터 추정 (Active Appearance Model Face Shape Estimation Using Face Region Tracking and Mouth Detection)

  • 최권택;변혜란
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 가을 학술발표논문집 Vol.32 No.2 (2)
    • /
    • pp.928-930
    • /
    • 2005
  • 얼굴의 특징점 추적은 많은 응용프로그램에서 사용된다. AAM기반의 접근방식은 정교한 얼굴 특징점 정보를 제공하지만 정확한 특징 점 추출을 위해 얼굴 모양 파라미터 초기화 문제와 연속 영상에서 얼굴의 이동이 클 경우 모션 보정에 대한 문제가 여전히 남아있다. 이러한 문제를 풀기 위해 본 논문에서는 CAMShift를 사용해 얼굴 영역을 추적하고, 얼굴 영역 내에서 입을 검출함으로써 AAM 검색을 위한 얼굴 모양 파라미터를 추정하는 방법을 제안한다. 기존 알고리즘과의 비교 실험을 통해 얼굴의 움직임이 심한 상황에서도 제안하는 알고리즘의 성능이 매우 우수함을 확인할 수 있었다.

  • PDF

고주파수 초음파 검출장에서 SiC 세라믹 내부의 미세결함 검출 (Detection of Small Flaws in SiC Structural Ceramic in High Frequency Detection Field)

  • 김병극;이승석
    • 비파괴검사학회지
    • /
    • 제17권2호
    • /
    • pp.100-107
    • /
    • 1997
  • 파괴역학적 고려에 의하여 구조용 세라믹에서 $100{\mu}m$보다 작은 크기의 결함을 검출하는 것이 요구되고 있다. 미세결함이 삽입된 세라믹 시편을 준비하여 고주파수 검출장에서 C-scan을 수행하였다. 두께 4m의 SiC 세라믹 시편들을 입도가 $100{\mu}m$에서 $200{\mu}m$ 범위의 Fe, 입도 $36{\mu}m$에서 $50{\mu}m$ 범위의 Fe와 $50{\mu}m$ 크기의 pore를 용침법(infiltration)으로 삽입하여 준비하였고 또 입도 $100{\mu}m$에서 $200{\mu}m$ 범위의 WC, 입도 $36{\mu}m$에서 $50{\mu}m$ 범위의 WC, 입도 $100{\mu}m$에서 $200{\mu}m$ 범위의 Si, 입도 $36{\mu}m$에서 $50{\mu}m$ 범위의 Si 입자들을 소결법(sintering)으로 삽입하여 준비하였다. 준비된 시편에 대해 중심주파수 80MHz의 polyvinylidene fluoride(PVDF) 초음파탐촉자를 사용하여 C-scan을 수행한 결과 100MHz 범위까지의 고주파수 성분을 지닌 검출장에서는 $36{\mu}m$에서 $200{\mu}m$ 범위의 미세결함들이 검출되었으나 60MHz 이하의 주파수 성분만으로 구성된 저주파수 검출장에서는 검출되지 않았다. 중심 주파수에서의 파장에 대하여 검출된 최소 결함의 비는 약 0.25로 Rayleigh 산란 영역이었다.

  • PDF

전처리 필터링 후 픽셀 분포 평가를 통한 혀 방향 인식 (Direction Recognition of Tongue through Pixel Distribution Estimation after Preprocessing Filtering)

  • 김창대;이재성
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2013년도 추계학술대회
    • /
    • pp.73-76
    • /
    • 2013
  • 본 논문은 입 영역의 픽셀 분포의 비교를 통해 혀의 방향 인식 알고리즘을 제안한다. 스마트폰의 크기가 커짐에 따라 얼굴의 제스쳐를 이용한 스마트폰 제어 기술이 요구되고 있다. 처음 코의 영역을 먼저 검출한 뒤 코와 입 부분의 비율로 입의 영역을 검출한다. 입의 영역을 검출한 뒤 방향별 영역을 나누고 혀와 유사한 색의 픽셀분포를 파악해 가리키는 방향을 인지한다. 본 알고리즘은 연구실 연구원 5명을 대상으로 한 실험에서 인식률이 80%에 육박하였다.

  • PDF

딥러닝을 이용한 번호판 검출과 인식 알고리즘 (License Plate Detection and Recognition Algorithm using Deep Learning)

  • 김정환;임준홍
    • 전기전자학회논문지
    • /
    • 제23권2호
    • /
    • pp.642-651
    • /
    • 2019
  • 최근 지능형 교통관제 시스템에 관한 다양한 연구가 진행되고 있는 가운데 번호판 검출과 인식 알고리즘은 가장 중요한 요소 중에 하나로 대두되고 있다. 번호판은 차량의 고유 식별값을 가지고 있기 때문이다. 기존의 차량 통행 관제 시스템은 정차를 기반으로 하고 있으며 차량의 입출입 인식 방법으로 루프 코일을 사용하고 있다. 이러한 방법은 교통 정체를 유발하고 유지보수 비용이 상승하는 단점을 가지고 있다. 본 논문에서는 이러한 문제점을 해결하기 위해서 차량의 입출입 인식 방법으로 카메라 영상을 사용한다. 차량 통행 관제 시스템의 특성상 카메라가 고정되어 있다. 이에 차량이 접근하면 카메라의 배경화면이 달라진다. 이 특징을 이용하여 배경화면의 차분영상을 구하면 차량의 입출입을 인식할 수 있다. 입출입 인식 후 한국 번호판의 형태학적 특성을 이용하여 후보 이미지를 추정한다. 그리고 선형 SVM(Support Vector Machine)을 이용해서 최종 번호판을 검출한다. 검출한 번호판의 글자와 숫자 인식 방법으로는 CNN(Convolutional Neural Network) 알고리즘을 사용한다. 제안한 알고리즘은 기존의 시스템과 달리 검출 위치를 기준으로 글자와 숫자를 인식하기 때문에 번호판의 규격이 변해도 인식할 수 있다. 실험한 결과 기존의 번호판 인식 알고리즘들 보다 제안한 알고리즘이 더 높은 인식률을 가진다.