• Title/Summary/Keyword: 입체 트러스 구조물

Search Result 8, Processing Time 0.035 seconds

Design and Implementation of Parametric Modeler for Retractable Roof Three-Dimensional Truss (개폐식 지붕 입체트러스를 위한 파라메트릭 모델러의 설계와 구현)

  • Jeong, Jin-Young;Joung, Bo-Ra;Kim, Chee-Kyeong;Lee, Si Eun;Kim, Si-Uk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • The purpose of this study is to implement modeling by applying the parametric technique to the atypical trusses of rigid retractable large space structures. The retractable large space structure requires a lot of time and skill in modeling nonlinear shapes or generating, interpreting, and reviewing many models by alternative. To solve these problems, we introduce firstly parametric modeling tool, secondly, we analyze the connection of atypical three-dimensional trusses of a rigid retractable large-space structure, and finally model it as parametric components of the developed trusses. Therefore, it is a future study to make effective modeling of the openable roof by developing the components that can realize the modeling of the truss classified by the opening and closing method, respectively.

Study on the Scientific Functional Investigation of Steel Space Truss Structures by using Technology Tree Methodology (기술트리를 이용한 입체트러스 강구조물의 과학적 기능분석 방법론에 관한 연구)

  • Lee, Dong Kyu;Kim, Do Hwan;Kim, Jin Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.4
    • /
    • pp.321-333
    • /
    • 2013
  • This study presents a practice of a scientific methodology, i.e., technology tree to describe hierarchies of functions and technologies of research projects. In this study functional developments of a well-known steel space frame truss are dealt with for an application of the technology tree process to execute the maintenance of road tunnels without blocking vehicles. It is verified that established results of technology tree process can be linked to a proof process of revealed functions and component technologies such as reference works and structural analyses. In the future the technology tree methodology can be extendedly used for an effective tool setting up research plans and developing integrated technologies of a specific item such as a steel structure.

Structural Analysis of Space Truss by using New Force Method based on Singular Value Decomposition (특이값 분해로 정식화 된 새로운 하중법을 이용한 입체 트러스 구조 해석)

  • Lee, Su-Hyun;Chung, Woo-Sung;Lee, Jae-Hong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.5
    • /
    • pp.481-489
    • /
    • 2011
  • In this paper presents new force method by using singular value decomposition. The existing force method has some advantages about analysis of truss structures such as it is easier basic concept than finite element method, which apply to analyze truss structures. However, this method has complex formulation for analysis. Therefore, in this study proposes new force method using singular value decomposition, which is both having easy basic concept and simple computation than existing force method. The proposed method is illustrated through numerical examples.

Analytical Method for Elastoplastic Behavior of Truss element under Cyclic Axial Loading (반복 축 하중을 받는 트러스 요소의 탄소성 좌굴거동 해석기법에 관한 연구)

  • Baek, Ki Youl
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.3
    • /
    • pp.377-387
    • /
    • 2008
  • The post-buckling behavior of slender members, such as the chord of truss structures generally implies extreme strength degradation. The buckling strength is usually determined as the performance of the compressed steel members, so it is important to understand the exact buckling behavior of a member in order to design the entire structure. A target analytical model is usually divided by beam or shell element when we simulate the buckling behavior of a compressed steel member such as atruss member. In this case, it is possible to accurately obtain the behavior, but such would be expensive and would require experience inanalysis even in monotonic loading. In this paper, we propose a consistent and convenient method to analyze the post-buckling behavior of elastoplastic compression members. The present methods are formulated to satisfy the second law of thermodynamics. Three numerical examples were tested to determine the validity of the proposed model in cyclic loading with comparable F.E.M results.

Total design and manufacturing system for Space Truss structure (입체 트러스 구조물의 설계 및 제작 통합 시스템 구축)

  • 이병해;김홍국;김성근
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.04a
    • /
    • pp.49-56
    • /
    • 1994
  • The purpose of this study is to construct a total design & manufacturing system for the Space-Truss structure. In this study, we choose the transmission tower as the study model to show the possibility of a Total System for another space truss structure. We are confident that this total system should provide more convenience, accuracy and should help to save time from the design stage to construct stage of the transmission tower.

  • PDF

The System Shape and Size Discrete Optimum Design of Space Trusses using Genetic Algorithms (Genetic Algorithms에 의한 입체트러스의 시스템 형상 및 단면 이산화 최적설계)

  • Park, Choon Wook;Kim, Myung Sun;Kang, Moon Myung
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.5
    • /
    • pp.577-586
    • /
    • 2001
  • The objective of this study is the development of sizing and system shape discrete optime design algorithm which is based on the genetic algorithms (GAs). The algorithm can perform both size and shape optimum designs of space trusses. The developed algorithm was implemented in a computer program. The algorithm is known to be very efficient for the discrete optimization The genetic process selects the next design points based on the survivability of the current design points The evolutionary process evaluates the survivability of the design points selected from the genetic process in the genetic process of the simple genetic algorithms there are three basic operators : reproduction cross-over and mutation operators. The efficiency and validity of the developed discrete optimum design algorithm was verified by applying the algorithm to optimum design examples.

  • PDF

A Study on the Establishment Feature and the Development of Large Space Buildings in Korea (국내 대공간 건축의 발달과정과 건립특성에 관한 연구)

  • Lee, Ju-Na
    • Journal of Korean Association for Spatial Structures
    • /
    • v.9 no.2
    • /
    • pp.65-75
    • /
    • 2009
  • For the large space buildings since 1960s in Korea spanned more than 30m, the establishment feature and the development process were examined. As the Results, physical facilities with 40-70m span were mainly established in 1980s-1990s, but large scale convention centers have been establishing after 2000s as the used of large space buildings are varied. Also, a space frame has been generally used in 1980s while the unique structural shapes were builded in the early age(1960s), the structural design with concerns a form and using various structural systems have been attempting after 2000s.

  • PDF

Fatigue Behavior of Composite Beams with Pyramidal Shear Connector (입체트러스형 전단연결재를 갖는 합성판의 피로거동)

  • Lee, Kyeong-Dong;Han, Jae-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.2
    • /
    • pp.211-216
    • /
    • 2002
  • A steel plate-concrete composite slab with pyramidal shear connectors, named TSC composite slab, is expected to have sufficient bending strength and flexural rigidity for loads during and after construction. Fatigue problems play an important role in designing composite slab as bridge decks under traffic conditions. In this paper, a series of fatigue tests was carried out on TSC beam specimens under various loading conditions, in order to evaluate the fatigue strength of TSC composite slabs. The results are as follows : (1) the fatigue failure of TSC composite beams results from the tensile fracture of bottom steel plate and shear connector, and (2) fatigue strength of the steel plate for two million cycles can be estimated to be $1144kgf/cm^2$ from the S-N curves.