• Title/Summary/Keyword: 입자 직경

Search Result 524, Processing Time 0.025 seconds

Modeling of Solid Circulation in a Fluidized-Bed Dry Absorption and Regeneration System for CO2 Removal from Flue Gas (연소기체로부터 CO2 회수를 위한 건식 유동층 흡수-재생 공정의 고체순환 모사)

  • Choi, Jeong-Hoo;Park, Ji-Yong;Yi, Chang-Keun;Jo, Sung-Ho;Son, Jae-Ek;Ryu, Chong Kul;Kim, Sang-Done
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.286-293
    • /
    • 2005
  • An interpretation on the solid circulation characteristics in a fluidized-bed process has been carried out as a first step to simulate the dry entrained-bed absorption and bubbling-bed regeneration system for $CO_2$ removal from flue gas. A particle population balance has been developed to determine the solid flow rates and particle size distributions in the process. Effects of principal process parameters have been discussed in a laboratory scale process (absorption column: 25 mm i.d., 6 m in height; regeneration column: 0.1 m i.d., 1.2 m in height). The particle size distributions in absorption and regeneration columns were nearly the same. As gas velocity or static bed height in the absorption column increased, soild circulation rate and feed rate of fresh sorbent increased, however, mean particle diameter decreased in the absorption column. As cut diameter of the cyclone of the absorption column increased, solid circulation rate decreased, whereas feed rate of fresh sorbent and mean particle diameter in the absorption column increased. As attrition coefficient of sorbent particle increased, solid circulation rate and feed rate of fresh sorbent increased but mean particle diameter in the absorption column decreased.

Investigation of Convective Heat Transfer Characteristics of Aqueous SiO2 Nanofluids under Laminar Flow Conditions (층류유동 조건에서 SiO2 나노유체의 대류 열전달 특성에 대한 연구)

  • Park, Hyun-Ah;Park, Ji-Hyun;Jeong, Rag-Gyo;Kang, Seok-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.1-11
    • /
    • 2016
  • The effect of the migration of nanoparticles near the wall of a channel on the convective heat transfer in a laminar flow of $SiO_2$ nanoparticle suspensions (nanofluids) under constant wall heat flux boundary conditions was numerically and experimentally investigated in this study. The dynamic thermal conductivity of the aqueous $SiO_2$ nanofluids was measured using T-type thermocouples attached to the outer surface of a stainless steel circular tube (with a length of 1 m and diameter of 1.75 mm). The nanofluids used in this study were synthesized by dispersing $SiO_2$ spherical nanoparticles with a diameter of 24 nm in de-ionized water (DIW). The enhancement of the thermal conductivity of the nanofluids (e.g., an increase of up to 7.9 %) was demonstrated by comparing the temperature profiles in the flow of the nanofluids with that in the flow of the basefluids (i.e., DIW). However, this trend was not demonstrated in the computational analysis, because the numerical models were based on continuum assumptions and flow features involving nanoparticles in a stable colloidal solution. Thus, to explore the non-continuum effects, such as the modification of the morphology caused by nanoparticle-wall interactions on the heat exchanging surfaces (e.g., the isolated and dispersed precipitation of the nanoparticles), additional experiments were performed using DIW right after the measurements using the nanofluids.

Effect of Operating Variables on the Morphology of Precipitated Calcium Carbonate in a Slurry Bubble Reactor (슬러리 기포탑 반응기에서 침강성 탄산칼슘의 모폴로지에 대한 조업변수들의 영향)

  • Hwang, Jung-Woo;Lee, Yoong;Lee, Dong-Hyun
    • Clean Technology
    • /
    • v.16 no.2
    • /
    • pp.124-131
    • /
    • 2010
  • Effects of $Ca(OH)_2$ concentration (0.16~0.64 wt%), surfactant concentration (2~16 wt%), total volumetric flow rate (3~6 L/min) and $CO_2$ volume fraction $(0.3{\sim}0.6)$ on morphology, crystal structure, mean particle diameter, aggregation and specific surface area of the precipitated $CaCO_3$ were investigated in the slurry bubble column reactor. Experiments were carried out in acrylic reactor ($0.11\;m-ID{\times}1.0\;m-high$) with a internal tube ($0.04\;m-ID{\times}1.0\;m-high$h). The reaction time of $CaCO_3$ synthesis decreased with adding Dispex N40 of the anionic surfactant. The reaction rate of $Ca(OH)_2$ increased with increasing the volumetric flow rate of $CO_2$. From SEM images, the single crystal of $CaCO_3$ increased with increasing the reaction rate in the saturated concentration of $Ca(OH)_2$ (0.16 wt %) and the concentration of Dispex N40 (2 wt%). The mean particle size of $CaCO_3$ varied with adding Dispex N40. In addition, the specific surface area of $CaCO_3$ increased with adding of surfactant (2 wt%) from $35m^2/g$ to $44m^2/g$ at the volumetric flow rate of $CO_2$ (0.9 L/min) and the concentration of $Ca(OH)_2$(0.64 wt %).

Dispersion Polymerization of Acrylate Monomers in Supercritical $CO_2$ using GMA-functionalized Reactive Surfactant (초임계 이산화탄소에서 Glycidyl methacrylate 반응성 계면활성제를 이용한 아크릴레이트의 분산중합)

  • Park, Kyung-Kyu;Kang, Chang-Min;Lee, Sang-Ho
    • Elastomers and Composites
    • /
    • v.45 no.4
    • /
    • pp.256-262
    • /
    • 2010
  • Dispersion polymerization of methyl acrylate, ethyl acrylate, butyl acrylate, and glycidyl methacrylate were performed in supercritical $CO_2$ at $80\;^{\circ}C$ and 346 bar. Glycidyl methacrylate linked poly(dimethylsiloxane) (GMS-PDMS) surfactant, which was prepared by linking glycidyl methacrylate to monoglycidyl ether terminated PDMS with amino-propyltriethoxysilane, was used as surfactant for the dispersion polymerization in $CO_2$. The yield of the poly(alkyl acrylate) polymers, synthesized in $CO_2$ medium, decreased as the alkyl tail of the acrylate monomers increased. Poly(glycidyl methacrylate) and poly(methyl acrylate) were produced in bead form whereas poly(ethyl acrylate) and poly(butyl acrylate) were viscous liquid. The poly(glycidyl methacrylate) particles had a number average diameter of 2.45 ${\mu}m$ and monodisperse distribution. The poly(methyl acrylate) had a number average diameter of 0.52 ${\mu}m$ and the particle size distribution was bimodal. The glass transition temperatures ($T_g$) of the poly(glycidyl methacrylate) and the poly(alkyl acrylate) products were 4~9 K higher than the $T_g$ of the corresponding acrylate polymers synthesized in conventional processes.

Performance of Mini-Sprinkler - (2) Size of Droplets (미니 스프링클러의 살수 기능 - (2) 살수 입자의 크기)

  • 서상룡;성제훈
    • Journal of Bio-Environment Control
    • /
    • v.6 no.3
    • /
    • pp.183-189
    • /
    • 1997
  • This study was performed to Investigate size of droplet sprinkled from mini-sprinkler. Twelve different kinds of the sprinkler having various structures and sizes of nozzle orifices were selected and tested. Diameters of the droplet reached at several distances from a sprinkler were measured by a machine vision system and the volume median diameters (VMM) were determined statistically. The size of droplet was not affected much by the size of nozzle orifice of a sprinkler but was rather more affected by structure of the sprinkler, especially by the shape of spreader of the sprinkler. Experiment of varying pressure of sprinkling water validated that the size of droplet was inversely proportional to water pressure powered by 1/3. Hence the size of droplet at any water pressure could be easily estimated from experimental data. The size of droplet increased as travel distance of the droplet increases in a relationship of and order function. The size of droplet of the tested sprinkler were in the ranges of 100-300fm within 1m of droplet travel distance, 230~470${\mu}{\textrm}{m}$ within 1~2m of droplet travel distance and 300~770${\mu}{\textrm}{m}$ within 2~3m of droplet travel distance.

  • PDF

Performance Evaluation of Hydrocyclone Filter for Treatment of Micro Particles in Storm Runoff (Hydrocyclone Filter 장치를 이용한 강우유출수내 미세입자 제거특성 분석)

  • Lee, Jun-Ho;Bang, Ki-Woong;Hong, Sung-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.11
    • /
    • pp.1007-1018
    • /
    • 2009
  • Hydrocyclone is widely used in industry, because of its simplicity in design, high capacity, low maintenance and operational cost. The separation action of a hydrocyclone treating particulate slurry is a consequence of the swirling flow that produces a centrifugal force on the fluid and suspended particles. In spite of hydrocyclone have many advantage, the application for treatment of urban stormwater case study were rare. We conducted a laboratory scale study on treatable potential of micro particles using hydrocyclone filter (HCF) that was a combined modified hydrocyclone with perlite filter cartridge. Since it was not easy to use actual storm water in the scaled-down hydraulic model investigations, it was necessary to reproduce ranges of particles sizes with synthetic materials. The synthesized storm runoff was made with water and addition of particles; ion exchange resin, road sediment, commercial area manhole sediment, and silica gel particles. Experimental studies have been carried out about the particle separation performance of HCF-open system and HCF-closed system. The principal structural differences of these HCFs are underflow zone structure and vortex finder. HCF was made of acryl resin with 120 mm of diameter hydrocyclone and 250 mm of diameter filter chamber and overall height of 800 mm. To determine the removal efficiency for various influent concentrations of suspended solids (SS) and chemical oxygen demand (COD), tests were performed with different operational conditions. The operated maximum of surface loading rate was about 700 $m^3/m^2$/day for HCF-open system, and 1,200 $m^3/m^2$/day for HCF-closed system. It was found that particle removal efficiency for the HCF-closed system is better than the HCF-open system under same surface loading rate. Results showed that SS removal efficiency with the HCF-closed system improved by about 8~20% compared with HCF-open system. The average removal efficiency difference for HCF-closed system between measurement and CFD particle tracking simulation was about 4%.

Effect of Pre-chlorine and Polyamine Dosing for Microcystis sp. Bloomed Water on Drinking Water Treatment Processes : Particle Matter Distribution (Microcystis sp.로 수화된 상수원수에 전염소 및 폴리아민 투입이 정수처리에 미치는 영향 : 입자상 물질 분포)

  • Son, Hee-Jong;Kim, Sang-Goo;Lee, Jeong-Kyu;Hwang, Young-Do;Ryu, Dong-Choon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.10
    • /
    • pp.556-560
    • /
    • 2017
  • This research carried out to evaluate the disadvantage of pre-chlorination and the effect of polyamine as coagulant aids for treating the blooming water with Microcystis sp.. Pre-chlorination on blooming water makes the colony of Microcystis sp. to the smaller size. Coagulation with polyamine advanced treatment efficiency not only turbidity but also particulate matters especially less then $5{\mu}m$ size for the blooming water compared with using alum alone. Particle count was more sensitive than turbidity on water quality management of settlement and filtrate.

Characteristics of Energy Dissipation in Nano Shock Suspension System Using Silica Gel (세라믹 분말을 이용한 나노 충격 완화 장치의 에너지 소산 효율 특성에 대한 연구)

  • 문병영;정성원
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.17-22
    • /
    • 2003
  • This paper presents an experimental investigation of a reversible colloidal seismic damper, which is statically loaded, The porous matrix is composed from silica gel (labyrinth or central-cavity architecture), coated by organo-silicones substances, in order to achieve a hydrophobic surface. Water is considered as associated lyophobic liquid. Reversible colloidal damper static test rig and the measuring technique of the static hysteresis are described. Influence of the pare and particle diameters, particle architecture and length of the grafted molecule upon the reversible colloidal damper hysteresis is investigated, for distinctive types and mixtures of porous matrices, Variation of the reversible colloidal damper dissipated energy and efficiency with temperature, pressure, is illustrated.

Study on Acoustic Attenuation due to Particles and Flow Turning in Rocket Motors (고체 입자와 유동방향 변환에 의한 로켓 모터 내 음향 감쇠에 대한 고찰)

  • Kim, Taejin;Sung, Hong-Gye;Seo, Seonghyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.9
    • /
    • pp.838-844
    • /
    • 2015
  • This paper includes summarization and analysis of previous research results on acoustic attenuation due to particles and flow turning in rocket motors among various damping parameters. Particle damping is the most effective mechanism in suppressing high-frequency combustion instabilities occurring in rocket combustion chambers, which is dependent on the size and the mass fraction of particles. Relatively weak attenuation by flow turning compared to particle damping depends on the geometry of propellant and a combustion chamber. Pumping driving effects need to be taken into account when realizing vorticity generation on the propellant surface. However, its driving effects become cancelled out by flow turning loss when the propellant geometry is cylindrical.

Effects of Atmospheric Composition Substitution and Pressure on Soot Formation of Jet-A1 Droplet Flames (대기조성 치환 및 압력이 Jet A1 액적화염의 매연입자 생성에 미치는 영향에 관한 연구)

  • Nam, Won-Sik;Ryu, Myung-Ho;Lee, Jong Won;Park, Seul-Hyun
    • Fire Science and Engineering
    • /
    • v.33 no.5
    • /
    • pp.13-18
    • /
    • 2019
  • In this study, the soot formation characteristics of Jet-A1 liquid fuel droplet flames were investigated by measuring the soot concentration under atmospheric conditions similar to the working environment of the Korea Space Launch Vehicle (KSLV) To obtain the desired atmospheric conditions, the oxygen concentration in the combustion chamber was maintained at 30% and the pressure was varied between 0.1 and 0.06 MPa. The full-field light extinction technique was used to measure the concentration of soot particles generated by applying the identical to 2-mm-diameter Jet-A1 fuel droplets. The soot concentration of the Jet-A1 droplet flames was the highest in the nitrogen-substituted atmosphere and the lowest in the carbon dioxide-substituted atmosphere, despite the pressure. the pressure was decreased the measured soot concentrations reduced as a function of Pn.