• Title/Summary/Keyword: 입자완화 유체동역학

Search Result 13, Processing Time 0.02 seconds

Smoothed Particle Hydro-dynamic Analysis of Improvement in Sludge Conveyance Efficiency of Screw Decanter Centrifuge (입자 완화 유체 동역학 해석 기법을 이용한 스크류 디켄터형 원심분리기의 슬러지 이송 효율 향상 분석)

  • Park, Dae Woong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.3
    • /
    • pp.285-291
    • /
    • 2015
  • A centrifuge works on the principle that particles with different densities will separate at a rate proportional to the centrifugal force during high-speed rotation. Dense particles are quickly precipitated, and particles with relatively smaller densities are precipitated more slowly. A decanter-type centrifuge is used to remove, concentrate, and dehydrate sludge in a water treatment process. This is a core technology for measuring the sludge conveyance efficiency improvement. In this study, a smoothed particle hydro-dynamic analysis was performed for a decanter centrifuge used to convey sludge to evaluate the efficiency improvement. This analysis was applied to both the original centrifugal model and the design change model, which was a ball-plate rail model, to evaluate the sludge transfer efficiency.

Comparison of Fluid Modeling Methods Based on SPH and ISPH for a Buoy Design for a Wave Energy Converter (파력발전기 부유체설계를 위한 SPH와 ISPH 유체모델링 기법 비교)

  • Jun, Chul-Woong;Sohn, Jeong-Hyun;Yang, Min-Seok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.3
    • /
    • pp.94-99
    • /
    • 2017
  • The buoy of the wave energy converter moves by direct contact with the fluid. In order to design a buoy by using the numerical method, it is necessary to analyze not only the contact with the fluid but also the exact behavior of the fluid. In this paper, differences between weakly compressible smoothed particle hydrodynamics (WCSPH) and incompressible smoothed particle hydrodynamics (ISPH) are compared and analyzed for two-dimensional dam breaking simulation. ABAQUS, which is a commercial analysis program, is used for WCSPH analysis. A laboratory code is developed for ISPH analysis. The surface shape, the velocity, and the pressure pattern of the fluid are compared. The results of the laboratory code show the similar tendencies with those of ABAQUS, and there is a little difference in the pressure result.

Bird Strike Analysis of Radome Using Smoothed Particle Hydrodynamics Technique (입자완화 유체동역학 기법을 이용한 레이돔 조류충돌해석)

  • Yun, Gangsik;Kim, Youngjin;Kim, Moon-soo;Kim, Jihyeon;Kim, Taehyeong;Yoon, Siyoung;Park, Sungkyun;Seo, Won-gu;Oh, Dongho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.743-751
    • /
    • 2017
  • To evaluate the structural integrity of the helicopter radome, we performed bird strike analysis using SPH (Smoothed Particle Hydrodynamics) technique. Since the SPH method is a meshfree method, there is no phenomenon such as mesh tangling and it is suitable to predict the dispersion behavior of debris and debris cloud generated by high-speed impact. In order to observe the scattering direction of fractured bolts, the analysis were performed under the condition that the fracture occurs at the proof load. As a result of bird strike analysis, there is no secondary damage as well as the damage due to, the dispersion behavior of the bird model, and the scattering of the fractured bolts and radome. From the additional analysis that were performed to determine the actual bolt fracture, only plastic deformation is predicted since the maximum stress of the bolt does not exceed the ultimate stress.

A Study on the Kinetic Energy and Dispersion Behavior of High-velocity Impact-induced Debris Using SPH Technique (SPH 기법을 이용한 고속충돌 파편의 운동에너지와 분산거동 연구)

  • Sakong, Jae;Woo, Sung-Choong;Kim, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.5
    • /
    • pp.457-467
    • /
    • 2016
  • In this study, we investigate the dispersion behavior of debris and debris cloud generated by high-velocity impacts using the smoothed particle hydrodynamics (SPH) technique. The projectile and target plate were made of aluminum, and we confirm the validity of the SPH technique by comparing the measured major and minor axis lengths of the debris cloud in the reference with the predicted values obtained through the SPH analysis. We perform high-velocity impact and fracture analysis based on the verified SPH technique within the velocity ranges of 1.5~4 km/s, and we evaluate the dispersion behavior of debris induced by the impact in terms of its kinetic energy. The maximum dispersion radius of the debris on the witness plates located behind the target plate was increased with increasing impact velocity. We derive an empirical equation that is capable of predicting the dispersion radius, and we found that 95% of the total kinetic energy of the debris was concentrated within 50% of the maximum dispersion radius.

Molten Metal Flow Analysis of Casting Process Using SPH Method (SPH 기법을 이용한 주조공정 용탕 주입 유동 해석)

  • Park, Byung Lae;Lee, Sang Wook
    • Journal of the Korean Society of Visualization
    • /
    • v.16 no.1
    • /
    • pp.54-60
    • /
    • 2018
  • It is important to develop more efficient and productive casting processes for an automated high precision molten-metal casting system. Detailed analysis of molten-metal flow in the casting process by the numerical approach will help to optimize the control of a ladle. In this study, the smoothed particle hydrodynamics method was applied to analyze casting flow characteristics with different tilting angular speed and initial molten-metal level. The smoothed particle hydrodynamics technique has advantages to easily handle non-linear free surface behavior with the absence of a computational mesh. We found that tilting angular speed has relatively greater effect on the casting flowrate and that the effect of the initial molten-metal level is only minor. Further extensive study will be necessary to find an optimal condition for high efficient casting system.

A Study on the Damage of Satellite caused by Hypervelocity Impact with Orbital Debris (우주파편 초고속충돌에 의한 위성구조체의 손상에 관한 연구)

  • Kang, Pil-Seong;Im, Chan-Kyung;Youn, Sung-Kie;Lim, Jae-Hyuk;Hwang, Do-Soon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.7
    • /
    • pp.555-563
    • /
    • 2012
  • In earth orbit, a great number of orbital debris move around in extremely high velocity, and they become serious threats to satellites. In this study, smoothed particle hydrodynamics(SPH) is used to analyze the damage of a low earth orbit satellite due to the hypervelocity impact with orbital debris. The damage of honeycomb sandwich panel(HC/SP) used for walls of a satellite is analyzed with respect to impact velocities. For the additional analysis to examine the safety of interior components of the satellite, an attached electronic box and an offset electronic box are considered. As a result of the analysis considering the orbital debris having a probability of collision more than 2% at altitude of 685km, it is shown that the HC/SP can be perforated but only small craters are formed on both the attached electronic box and the offset electronic box.

Study on Material Fracture and Debris Dispersion Behavior via High Velocity Impact (고속충돌에 따른 재료 파괴 및 파편의 분산거동 연구)

  • Sakong, Jae;Woo, Sung-Choong;Kim, Jin-Young;Kim, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.11
    • /
    • pp.1065-1075
    • /
    • 2017
  • In this study, high velocity impact tests along with modeling of material behavior and numerical analyses were conducted to predict the dispersion behavior of the debris resulting from a high velocity impact fracture. For the impact tests, two different materials were employed for both the projectile and the target plate - the first setup employed aluminum alloy while the second employed steel. The projectile impacts the target plate with a velocity of approximately 1 km/s were enforced to generate the impact damages in the aluminum witness plate through the fracture debris. It was confirmed that, depending on the material employed, the debris dispersion behavior as well as the dispersion radii on the witness plate varied. A numerical analysis was conducted for the same impact test conditions. The smoothed particle hydrodynamics (SPH)-finite element (FE) coupled technique was then applied to model the fracture and damage upon the debris. The experimental and numerical results for the diameters of the perforation holes in the target plate and the debris dispersion radii on the witness plate were in agreement within a 5% error. In addition, the impact test using steel was found to be more threatening as proven by the larger debris dispersion radius.

Real-time Simulation Technique for Visual-Haptic Interaction between SPH-based Fluid Media and Soluble Solids (SPH 기반의 유체 및 용해성 강체에 대한 시각-촉각 융합 상호작용 시뮬레이션)

  • Kim, Seokyeol;Park, Jinah
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.1
    • /
    • pp.32-40
    • /
    • 2017
  • Interaction between fluid and a rigid object is frequently observed in everyday life. However, it is difficult to simulate their interaction as the medium and the object have different representations. One of the challenging issues arises especially in handling deformation of the object visually as well as rendering haptic feedback. In this paper, we propose a real-time simulation technique for multimodal interaction between particle-based fluids and soluble solids. We have developed the dissolution behavior model of solids, which is discretized based on the idea of smoothed particle hydrodynamics, and the changes in physical properties accompanying dissolution is immediately reflected to the object. The user is allowed to intervene in the simulation environment anytime by manipulating the solid object, where both visual and haptic feedback are delivered to the user on the fly. For immersive visualization, we also adopt the screen space fluid rendering technique which can balance realism and performance.

Characteristics of sloshing load and flow inside a tank with cylinder structures (실린더 구조물을 설치한 탱크 내부의 슬로싱 하중과 유동 특성)

  • Ki Jong Kim;Hyun-Duk Seo;Daegyoum Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.1
    • /
    • pp.31-39
    • /
    • 2023
  • Sloshing of the fluid having a free surface produces an impact force on a tank wall subjected to external excitation. This paper investigates the effect of cylindrical structures in a rectangular sloshing tank under translational harmonic excitations. By varying the number of installed cylinders in the tank, the characteristics of the free-surface deformation is experimentally observed, and the peak pressure on the tank wall is extracted by threshold values. To predict the peak pressure, the numerical simulation is also conducted using smoothed particle hydrodynamics (SPH), and the peak values are compared with the experimental results. Furthermore, pressure and velocity fields in the tank and free-surface shape are analyzed at the moment of impact.