• Title/Summary/Keyword: 입자분산

Search Result 1,100, Processing Time 0.026 seconds

Flow Characteristics of Al2O3 Nanofluids with Nanoparticles of Various Shapes (나노입자 형상 변화에 따른 알루미나 나노유체의 유동 특성)

  • Hwang, Kyo-Sik;Ha, Hyo-Jun;Jang, Seok-Pil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.3
    • /
    • pp.293-299
    • /
    • 2011
  • To study the flow characteristics of water-based $Al_2O_3$ nanofluids according to the shape of the nanoparticles, we measure the pressure drop in a fully developed laminar flow regime. Water-based $Al_2O_3$ nanofluids of 0.3 Vol.% with sphere-, rod-, platelet-, and brick-shaped nanoparticles are manufactured by the two-step method. Zeta potential is measured to examine the suspension and dispersion characteristics, and TEM image is considered to confirm the shape characteristics of the nanoparticles. The experimental results show that the pressure drop of $Al_2O_3$ nanofluids depends on the shape of the nanoparticles although the nanofluids has same volume fraction of nanoparticles. This is explained by the surface area per unit mass of the nanoparticles and the size of the nanoparticles suspended in the base fluids.

Response of laser light active scattering aerosol spectrometer to light-absorbing aerosol particulates (광흡수성 분체입자에 대한 레이저산란광 분체입도측정기의 반응 특성)

  • Jeung, I. S.
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.55-63
    • /
    • 1984
  • Berglund-Liu 진동방식 단분산 분체입자 발생기(Berglund-Liu vibrating orifice monodisperse aerosol generator)에 의하여 제작한 단분산 광흡수성 표준분체입자를 사용하여 레이저 산란광 분체입도 측정기 (Knollenberg active scattering aerosol spectrometer)의 반응특성을 조사하 였다. 실험결과, 기기의 반응특성은 Mie 산란이론에 의하여 계산한 이론치와 매우 잘 일치하며 특히 광흡수성 분체입자는 광통과성 분체입자가 다의적인 특성을 나타내는 것에 반하여 거의 단조증가하는 일의적인 특성을 가지고 있으며 광흡수성 분체입자의 반응특성이 제작자의 교정 치에 가까운 결과를 나타내었다.

  • PDF

Microstructure of alumina-dispersed Ce-TZP ceramics (알루미나가 분산된 세리아 안정화 지르코니아 세라믹스의 미세구조)

  • 김민정;이종국
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.2
    • /
    • pp.122-127
    • /
    • 2000
  • Microstructural evolutions in ceria-stabilized zirconia (Ce-TZP) and alumina-dispersed Ce-TZP ceramics were investigated as functions of doping and annealing conditions. All of sintered specimens showed the relative density over 99 %. Sintered specimens had linear grain boundaries and normal grain shapes, but ceria-doped specimens had irregular grain shapes and nonlinear grain boundaries due to the diffusion-induced grain boundary migration during annealing at $1650^{\circ}C$ for 2 h. Mean grain boundary length of Ce-TZP with irregular grain shapes was higher than that of normal grain shapes, and was a value of 23pm at the maximum. Alumina particles dispersed in Ce-TZP inhibited the grain growth of zirconia particles. $Al_2O_3$Ce-TZP doped with ceria and annealed at $1650^{\circ}C$ for 2 h showed irregular grain shapes as well as small grain size. Added alumina particles showed the grain growth during sintering or annealing, and they changed the position from grain boundary to inside of the grains during the annealing. The specimens with normal grain shapes showed an intergranular fracture mode, whereas the specimens with irregular grain shapes showed a transgranular fracture mode during the crack propagation.

  • PDF

응집 구조 제어에 의한 세라믹 분말 공정

  • Lee, Hae-Won;Kim, Sang-U;Jeon, Hyeong-U;Song, Hyu-Seop
    • Ceramist
    • /
    • v.1 no.1
    • /
    • pp.28-36
    • /
    • 1998
  • 세라믹 분발의 분산안정성은 입자의 입경 및 형상, 배열형태, 그리고 분산기구에 따라 크게 달라진다. 대체로 입경이 콜로이드 범위내에 존재하면 일반적인 정전반발력이나 입체반발력에 의하여 분산이 가능하지만, 콜로이드 범위를 넘는 조대한 입경을 가지는 분말에서는 진정한 분산안정성을 얻는 것은 불가능하다. 비록 콜로이드 범위에 속히는 입경을 가지더라도 Hamaker 상수가 매우 높거나 기하이방성을 가진 입자가 우선배향성을 가지는 경우에도 마찬가지의 결과를 보여 준다. 진정한 의미의 분산안정성을 얻을 수 없는 경우 입자 간 포텐셜 에너지의 절대값이 최소가 되도록 함과 더불어 고분자 흡착층이나 전기이중층의 두께를 조정하여 입지간 평형거리를 조정하여 후속공정에서의 균일성을 유지하는 것이 기능하다. 이와 같은 제한응집은 진정한 의미의 분산안정성을 얻을 수 없는 분말을 구성분말로 하는 단미는 물론 복합재료에서도 활용이 가능하다. 나노 크기의 입경을 가지는 분말에서는 반데르발스 인력은 상대적으로 작지만, 정전반발력도 동시에 작아지기 때문에 에너지 장벽의 높이가 충분하지 않은 경향을 보인다. 따라서, 나노 분말의 분산안정성은 흡착층의 두께가 크지 않는 저분자량의 고분자를 흡착시켜 입체반발력을 부여하는 것이 바람직하다.

  • PDF

Size and Dispersion Characteristics of Silver Nanoparticles Prepared Using Liquid Phase Reduction Method (액상환원법으로 제조한 은 나노입자의 크기와 분산특성)

  • Lee, Jong Jib
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.10-16
    • /
    • 2016
  • This work investigates the size and dispersion characteristics of silver nanoparticles synthesized by a liquid phase reduction method using PAA. The experimental variables were the molecular weight and doses of the PAA, reducing agent, dispersant, and organic solvent (ethanol-acetone). UV-visible spectrophotometer results confirm the formation of the silver particles, and SEM indicates size in the nanometer range. As the ultrasonication time increases, there is a tendency toward smaller agglomerates of nanoparticles. The agglomerates were dispersed into 1-5 agglomerates of particles by ultrasonication for 3 hours or more. Relatively spherical nanoparticles were produced with a completely homogeneous dispersion and size of 49.56-85.75 nm by ultrasonication using BYK-192, a dispersant containing copolymer with a pigment affinic group. The average size of the silver nanoparticles was increased to 36.82, 50.66, and 56.06 nm with increasing molecular weight of PAA. Also, the size of the nanoparticles increased with the capping of PAA on the surfaces of the nanoparticles when increasing the amount of PAA. The addition of hydrazine as a reducing agent produced relatively small particles because many nuclei were created by the reduction reaction. The ethanol-acetone solvent helped with the regular arrangement of the silver nanoparticles.

A New Mixing Method of SiC Nanoparticle Reinforced Epoxy Composites with Large Concentration of SiC Nanoparticle (대용량 SiC 나노입자 강화 에폭시 복합재료의 새로운 분산방법)

  • Kwon, Dong-Jun;Shin, Pyeong-Su;Kim, Jong-Hyun;Park, Joung-Man
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.223-229
    • /
    • 2016
  • SiC nanoparticles were used to increase flexural properties of polymer matrix. This study was to manufacture huge concentration SiC nanoparticle/epoxy composites and to evaluate the dispersion. During mixing SiC nanoparticle and epoxy, 20 wt% SiC nanoparticle in total composites was used with both stirrer and sonication equipment together. Mixing speed and dispersion were improved with the method by using both stirrer and sonication equipment at the same time via mechanical test and FE-SEM. Based on the results, modeling of SiC nanoparticle dispersion could be established. Ultimately, unidirectional carbon fiber reinforced composites was manufactured using 20 wt% SiC nanoparticle/epoxy. Mechanical property of CFRP using dual stirrer and sonication mixing method was better than composites by single sonication mixing method.

Manufacturing and Characterization of SiC/AI Metal Matrix Composite by Modified Gas Metal Arc Welding Process ; Manufacturing and Microstructure (개조된 GMA용접공정을 이용한 SiC/AI 복합재료의 제조 및 특성)

  • Kim, Gwang-Su
    • Korean Journal of Materials Research
    • /
    • v.6 no.11
    • /
    • pp.1090-1098
    • /
    • 1996
  • 개조한 가스 금속 아아크 용접공정을 이용하여 SiC/AI 금속기 복합재료를 제조하고 그 특성을 조사하였다. AI 모재위에 강화입자의 크기와 부피분율을 변화하여 다양한 SiC/AI 복합재료층을 제조하였고, 만들어진 복합재료층의 특성은 미세조직관찰과 미소경도시험을 통하여 이루어졌다. 복합재료층의 두께는 약 7-8mm로 측정되었고 균일한 강화입자의 분포도를 얻을 수 있었다. 분산입자의 부피분률은 Ar가스의 유량에 의하여 조절하였고 분산입자의 부피분률이 증가하고 크기가 작아짐에 따라 기지의 수지상 응고조직은 더욱 미세화되었다. 복합재료의 부피경도는 분산입자의 부피분률이 감소함에 따라 낮아졌으나 입자 크기에는 크게 변화가 없는 것으로 나타났다.

  • PDF

Prediction Method of Dispersion Condition for Reinforced Epoxy in Nano SiC Particles Using Capacitance Measurement (Capacitance 측정법을 이용한 나노 SiC 에폭시 복합재료의 내부 강화재 분산 예측방법)

  • Kwon, Dong-Jun;Wang, Zuo-Jia;Kim, Je-Jun;Jang, Key-Wook;Park, Joung-Man
    • Composites Research
    • /
    • v.26 no.6
    • /
    • pp.337-342
    • /
    • 2013
  • The good dispersion of nano-materials in epoxy matrix was important parameter for the reinforcement effect, and the evaluation of dispersion degree was to prove it. This work was studied to predict the dispersion condition of nano-SiC powders in SiC/epoxy composites using capacitance measurement. Capacitance was defined to be the electric capacity in proportional to electron charge of the measuring section. In case of nano-SiC powders, the electron charge of SiC/epoxy composites was higher than that of neat epoxy resin. Capacitance was evaluated for each section of SiC/epoxy composites. The prediction of dispersion condition was verified by using capacitance measurement. Dispersion condition of nano-SiC powders in epoxy matrix was evaluated with two different dispersion methods, i.e., sonication and stirring methods. The dispersion degree was also verified with the tensile strength correlating to capacitance.

Measurement of Coarse Particle Mass in Alumina Powders Using Wet Sieve Method (습식 체분리법을 이용한 알루미나분말 중의 조대입자 함량평가)

  • Jung, Sang-Jin;Lim, Hyung-Mi;Lee, Seung-In;Kim, Young-Hee;Kim, Soo-Ryong;Cho, Yong-Ick
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.8
    • /
    • pp.775-782
    • /
    • 2002
  • The effects of solid and dispersant concentration was investigated by wet-sieving method for knowing the amount of coarse particle in fine powders. In the work alumina powders, sodium hexametaphosphate and sodium polyacrylate were used for preparing slurry. It was confirmed that the coarse particle mass increased by increasing alumina concentration and decreasing dispersant concentration. With systematic measurements we know that the alumina powder and dispersant of one weight percent(1.0wt%) were proper quantity for coarse particle mass measuring, respectively. Sodium polyacrylate as dispersant showed higher coarse particle mass than sodium hexametaphosphate. The sieve mass was decreased according to increase of experiment number. Based on experiments it was considered that wet-sieving method is good tool for measuring a coarse particle mass in fine powders.

Dispersion Stability of Rutile TiO2Powder Obtained by Homogeneous Precipitation Process at Low Temperature (저온균일침전법으로 제조된 루틸상 TiO2분말의 분산 안정성)

  • 배현숙;박순동;김흥희;이창규;김선재
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.1
    • /
    • pp.38-44
    • /
    • 2002
  • Dispersion stability of nano-sized rutile TiO$_2$powder with acicular typed primary particle produced by homogeneous precipitation process at low temperatures was studied in aqueous and non-aqueous media in the presence of various electrolytes. The zeta potential measurements have shown that the addition of electrolytes to aqueous and non-aqueous dispersion media leads to charge reversal on TiO$_2$particle surface. The electrostatic repulsive forces acting on between TiO$_2$particles dispersed in non-aqueous media were found to be significantly greater than that in aqueous media, which relate closely to the physical properties of the organic solvents, such as viscosities and dielectric constants. The pH values, the concentration of electrolytes and the valence of the ions have changed greatly the surface potential of TiO$_2$ particles and have governed the dispersion behavior of TiO$_2$particles virtually.