DOI QR코드

DOI QR Code

Prediction Method of Dispersion Condition for Reinforced Epoxy in Nano SiC Particles Using Capacitance Measurement

Capacitance 측정법을 이용한 나노 SiC 에폭시 복합재료의 내부 강화재 분산 예측방법

  • 권동준 (경상대학교 나노신소재융합공학과 고분자공학전공 대학원) ;
  • 왕작가 (경상대학교 나노신소재융합공학과 고분자공학전공 대학원) ;
  • 김제준 ((주)티비카본 복합신소재 연구소) ;
  • 장기욱 ((주)티비카본 복합신소재 연구소) ;
  • 박종만 (경상대학교 나노신소재융합공학과)
  • Received : 2013.06.22
  • Accepted : 2013.11.18
  • Published : 2013.12.31

Abstract

The good dispersion of nano-materials in epoxy matrix was important parameter for the reinforcement effect, and the evaluation of dispersion degree was to prove it. This work was studied to predict the dispersion condition of nano-SiC powders in SiC/epoxy composites using capacitance measurement. Capacitance was defined to be the electric capacity in proportional to electron charge of the measuring section. In case of nano-SiC powders, the electron charge of SiC/epoxy composites was higher than that of neat epoxy resin. Capacitance was evaluated for each section of SiC/epoxy composites. The prediction of dispersion condition was verified by using capacitance measurement. Dispersion condition of nano-SiC powders in epoxy matrix was evaluated with two different dispersion methods, i.e., sonication and stirring methods. The dispersion degree was also verified with the tensile strength correlating to capacitance.

나노입자를 이용하여 강화 효과를 높이기 위해서는 고분자 기지 내부의 균일한 분산 상태를 확보하여야 한다. 또한 균일분산 조건 확보 후 균일 분산상태를 증명할 평가자료가 필요하다. 본 연구는 에폭시 수지와 SiC 나노입자를 혼합한 SiC/에폭시 복합 수지를 제조할 경우 커패시턴스 측정법을 이용한 강화재 분산도 예측 연구를 진행하였다. 커패시턴스는 전기용량을 의미하며 측정 재료의 내부 전하량과 비례한다. 기존 에폭시 수지에 비해 나노 SiC 입자를 함유할 경우 전하량이 증가되는 이론을 바탕으로 구간별 커패시턴스 측정에 따른 분산도 평가를 진행하고, 커패시턴스 분산도 예측방법에 대한 타당성을 FE-SEM과 물리적 강도 증가 방법으로 평가하였다. 소니케이션 분산 방법과 교반기 분산 방법을 이용하여 분산 방법에 따른 SiC 나노입자 분산도 상태를 비교하였다. 인장강도와 커패시턴스 간의 상관관계가 있었으며, 파단면에 대한 비교를 할 때 분산성 향상에 대한 차이를 확인할 수 있었다.

Keywords

References

  1. Starov, V.M., Nanoscience Colloidal and Interfacial Aspects, CRC Press Toylor & Francis Group, Surfactant Science Series Volumes, U.S.A, 2009.
  2. Hui, H., Alexander, B., Emile, S.G., and Milo S.P.S., "Carbon Nanotube Grafted Silica Fibres: Characterising The Interface at The Single Fibre Level," Journal of Composite Science and Technology, Vol. 70, 2010, pp. 393-399. https://doi.org/10.1016/j.compscitech.2009.11.014
  3. Magnant, J., Laurenece, M., Rene, P., Jean, C.I., Alain G., Francis R., and Eric P., "Carbon Fiber/Reaction-Bonded Carbide Matrix for Composite Materials-Manufacture and Characterization," Journal of the European Ceramic Society, Vol. 32, 2012, pp. 4497-4505. https://doi.org/10.1016/j.jeurceramsoc.2012.06.009
  4. Vlastimil, M., Lu, Y., Li, H., Simha, G.M., and Vladimir T., "Effects of Silicon Carbide Particle Sizes on Friction-wear Properties of Friction Composites Designed for Car Brake Lining Applications," Tribology International, Vol. 43, 2010, pp. 144-151. https://doi.org/10.1016/j.triboint.2009.05.007
  5. Park, J.M., Jang, J.H., Wang, Z.J., Kwon, D.J., Gu, G.Y., Lee, W.I., Park, J.G., and DeVires, K.L., "Dispersion and Related Properties of Acid-Treated Carbon Nanotube/Epoxy Composites using Electro-Micromechanical, Surface Wetting and Single Carbon Fiber Sensor Tests," Advanced Composite Materials, Vol. 20, 2011, pp. 337-360. https://doi.org/10.1163/092430410X550881
  6. Park, J.M., Wang, Z.J., Kwon, D.J., Gu, G.Y., Lee, W.I., Park, J.G., and DeVires, K.L., "Optimum Dispersion Conditions and Interfacial Modification of Carbon Fiber and CNT-Phenolic Composites by Atmospheric Pressure Plasma Treatment," Composites Parts: B, Vol. 43, 2012, pp. 2272-2278. https://doi.org/10.1016/j.compositesb.2012.01.025
  7. Wang, Z.J., Kong, J., Lee, W.I., Park, J.G., and Park, J.M., "Interfacial Properties of Gradient Specimen of CNT-Epoxy Nanocomposites using Micromechanical Technique and Wettability," Journal of the Korean Society for Composite Materials, Vol. 22, No. 5, 2009, pp. 8-14.
  8. Brindley, K., Starting Electronics, 3d ed, Oxford, Newnes, UK, 2004.
  9. Slone, G.R., TAB Electronics Guide to Understanding Electricity and Electronics, 2d ed, McGraw-Hill, U.S.A., 2000.
  10. Park, J.M., Kwon, D.J., Wang, Z.J., Gu, G.Y., and DeVires, K.L., "Effect of Thermal Treatment Temperatures on the Reinforcing and Interfacial Properties of Recycled Carbon Fiber-Phenolic Composites," Composites: Part A, Vol. 47, 2013, pp. 156-164. https://doi.org/10.1016/j.compositesa.2012.12.002
  11. Horn, D.T., Basic Electronics Theory with Projects and Experiments, 4th ed, McGraw-Hill, U.S.A., 1994.

Cited by

  1. Optimum Mixing Ratio of Epoxy for Glass Fiber Reinforced Composites with High Thermal Stability vol.27, pp.4, 2014, https://doi.org/10.7234/composres.2014.27.4.168
  2. Investigation of Interfacial Adhesion of Different Shapes of Nano Carbon Fillers Reinforced Glass Fiber/Epoxy Composites by Spray Coating vol.27, pp.3, 2014, https://doi.org/10.7234/composres.2014.27.3.109