• Title/Summary/Keyword: 입술검출

Search Result 51, Processing Time 0.033 seconds

ASM based The Lip Line Dectection System for The Smile Expression Recognition (웃음 표정 인식을 위한 ASM 기반 입술 라인 검출 시스템)

  • Hong, Won-Chang;Park, Jin-Woong;He, Guan-Feng;Kang, Sun-Kyung;Jung, Sung-Tae
    • Annual Conference of KIPS
    • /
    • 2011.04a
    • /
    • pp.444-446
    • /
    • 2011
  • 본 논문은 실시간으로 카메라 영상으로부터 얼굴의 각 특징점을 검출하고, 검출된 특징점을 이용하여 웃음 표정을 인식하는 시스템을 제안한다. 제안된 시스템은 ASM(Active Shape Model)을 이용하여 실시간 검출부에서 얼굴 영상을 획득한 다음 ASM 학습부에서 학습된 결과를 가지고 얼굴의 특징을 찾는다. 얼굴 특징의 영상으로부터 입술 영역을 검출한다. 이렇게 검출된 입술 영역과 얼굴 특징점을 이용하여 사용자의 웃음 표정을 검출하고 인식하는 방법을 사용함으로써 웃음 표정 인식의 정확도를 높힐 수 있음을 알 수 있었다.

A Study on Extraction of Skin Region and Lip Using Skin Color of Eye Zone (눈 주위의 피부색을 이용한 피부영역검출과 입술검출에 관한 연구)

  • Park, Young-Jae;Jang, Seok-Woo;Kim, Gye-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.4
    • /
    • pp.19-30
    • /
    • 2009
  • In this paper, We propose a method with which we can detect facial components and face in input image. We use eye map and mouth map to detect facial components using eyes and mouth. First, We find out eye zone, and second, We find out color value distribution of skin region using the color around the eye zone. Skin region have characteristic distribution in YCbCr color space. By using it, we separate the skin region and background area. We find out the color value distribution of the extracted skin region and extract around the region. Then, detect mouth using mouthmap from extracted skin region. Proposed method is better than traditional method the reason for it comes good result with accurate mouth region.

Facial-feature Detection using Chrominance Components and Top-hat Operation (색도 정보와 Top-hat 연산을 이용한 얼굴 특징점 검출)

  • Boo Hee-Hyung;Lee Wu-Ju;Lim Ok-Hyun;Lee Bae-Ho
    • Annual Conference of KIPS
    • /
    • 2004.11a
    • /
    • pp.887-890
    • /
    • 2004
  • 임의 영상에서 얼굴 영역을 검출하고 얼굴 특징점 정보를 획득하는 기술은 얼굴 인식 및 표정 인식 시스템에서 중요한 역할을 한다. 본 논문은 색도 정보와 Top-hat 연산을 이용함으로써 얼굴의 유효 특징점을 효과적으로 검출할 수 있는 방법을 제안한다. 제안한 방법은 얼굴 영역 검출, 눈/눈썹 특징추출, 입술 특징추출의 세 과정으로 나눈다. 얼굴 영역은 $YC_{b}C_{r}$을 이용하여 피부색 영역을 추출한 후 모폴로지 연산과 분할을 통해 획득하고, 눈/눈썹 특징점은 BWCD(Black & White Color Distribution) 변환과 Top-hat 연산을 이용하며. 입술 특징점은 눈/눈썹과의 지정학적 상관관계와 입술 색상분포를 이용하는 방법을 사용한다. 실험을 수행한 결과. 제안한 방법이 다양한 영상에 대해서도 효과적으로 얼굴의 유효 특징점을 검출할 수 있음을 확인하였다.

  • PDF

A Lip Movement Image Tracing Test Environment Build-up for the Speech/Image Interworking Performance Enhancement (음성/영상 연동성능 향상을 위한 입술움직임 영상 추적 테스트 환경 구축)

  • Lee, Soo-Jong;Park, Jun;Kim, Eung-Kyeu
    • Annual Conference of KIPS
    • /
    • 2007.05a
    • /
    • pp.328-329
    • /
    • 2007
  • 본 논문은 로봇과 같이 외부 음향잡음에 노출되어 있는 상황 하에서, 대면하고 있는 사람이 입술을 움직여 발성하는 경우에만 음성인식 기능이 수행되도록 하기 위한 방안의 일환으로, 입술움직임 영상을 보다 정확히 추적하기 위한 테스트 환경 구현에 관한 것이다. 음성구간 검출과정에서 입술움직임 영상 추적결과의 활용여부는 입술움직임을 얼마나 정확하게 추적할 수 있느냐에 달려있다. 이를 위해 영상 프레임율 동적 제어, 칼라/이진영상 변환, 순간 캡쳐, 녹화 및 재생기능을 구현함으로써, 다각적인 방향에서 입술움직임 영상 추적기능을 확인해 볼 수 있도록 하였다. 음성/영상기능을 연동시킨 결과 약 99.3%의 연동성공율을 보였다.

Lip Contour Detection by Multi-Threshold (다중 문턱치를 이용한 입술 윤곽 검출 방법)

  • Kim, Jeong Yeop
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.12
    • /
    • pp.431-438
    • /
    • 2020
  • In this paper, the method to extract lip contour by multiple threshold is proposed. Spyridonos et. el. proposed a method to extract lip contour. First step is get Q image from transform of RGB into YIQ. Second step is to find lip corner points by change point detection and split Q image into upper and lower part by corner points. The candidate lip contour can be obtained by apply threshold to Q image. From the candidate contour, feature variance is calculated and the contour with maximum variance is adopted as final contour. The feature variance 'D' is based on the absolute difference near the contour points. The conventional method has 3 problems. The first one is related to lip corner point. Calculation of variance depends on much skin pixels and therefore the accuracy decreases and have effect on the split for Q image. Second, there is no analysis for color systems except YIQ. YIQ is a good however, other color systems such as HVS, CIELUV, YCrCb would be considered. Final problem is related to selection of optimal contour. In selection process, they used maximum of average feature variance for the pixels near the contour points. The maximum of variance causes reduction of extracted contour compared to ground contours. To solve the first problem, the proposed method excludes some of skin pixels and got 30% performance increase. For the second problem, HSV, CIELUV, YCrCb coordinate systems are tested and found there is no relation between the conventional method and dependency to color systems. For the final problem, maximum of total sum for the feature variance is adopted rather than the maximum of average feature variance and got 46% performance increase. By combine all the solutions, the proposed method gives 2 times in accuracy and stability than conventional method.

Dection Method of Human Face and Facial Components Using Adaptive Color Value and Partial Template Matching (적응적 칼라 정보와 부분 템플릿매칭에 의한 얼굴영역 및 기관 검출)

  • 이미애;류지헌;박기수
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.262-264
    • /
    • 2003
  • 얼굴영상을 효율적으로 처리하기 위해선 먼저 입력영상에서 얼굴영역과 얼굴을 구성하는 각 기관을 검출하는 전처리과정이 필요하다. 본 논문에서는 얼굴의 크기와 얼굴의 회전, 조영의 변화가 어느 정도 허용되고 피부색 배경이 얼굴에 병합된 경우에도 얼굴영역과 얼굴기관(눈, 입)을 강건하게 검출할 수 있는 방법으로, 입력영상에 따른 적응적 칼라 색상정보와 얼굴기관의 부분 템플릿매칭을 조합한 알고리즘을 제안한다. 변환된 HSV 칼라 좌표계상의 대역적 피부색상 정보와 히스토그램을 이용한 적응적 피부색상 정보로 얼굴영역을 검출한 뒤, 얼굴영역 안에서 입술색상 정보로 도출된 입술영역의 X축 기울기를 이용해 회전얼굴을 보정하고, 양안의 조합으로 이루어진 부분 템플릿을 이용해 눈을 검출한다.

  • PDF

Development of Recognition Application of Facial Expression for Laughter Theraphy on Smartphone (스마트폰에서 웃음 치료를 위한 표정인식 애플리케이션 개발)

  • Kang, Sun-Kyung;Li, Yu-Jie;Song, Won-Chang;Kim, Young-Un;Jung, Sung-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.4
    • /
    • pp.494-503
    • /
    • 2011
  • In this paper, we propose a recognition application of facial expression for laughter theraphy on smartphone. It detects face region by using AdaBoost face detection algorithm from the front camera image of a smartphone. After detecting the face image, it detects the lip region from the detected face image. From the next frame, it doesn't detect the face image but tracks the lip region which were detected in the previous frame by using the three step block matching algorithm. The size of the detected lip image varies according to the distance between camera and user. So, it scales the detected lip image with a fixed size. After that, it minimizes the effect of illumination variation by applying the bilateral symmetry and histogram matching illumination normalization. After that, it computes lip eigen vector by using PCA(Principal Component Analysis) and recognizes laughter expression by using a multilayer perceptron artificial network. The experiment results show that the proposed method could deal with 16.7 frame/s and the proposed illumination normalization method could reduce the variations of illumination better than the existing methods for better recognition performance.

Algorithm of Face Region Detection in the TV Color Background Image (TV컬러 배경영상에서 얼굴영역 검출 알고리즘)

  • Lee, Joo-Shin
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.4
    • /
    • pp.672-679
    • /
    • 2011
  • In this paper, detection algorithm of face region based on skin color of in the TV images is proposed. In the first, reference image is set to the sampled skin color, and then the extracted of face region is candidated using the Euclidean distance between the pixels of TV image. The eye image is detected by using the mean value and standard deviation of the component forming color difference between Y and C through the conversion of RGB color into CMY color model. Detecting the lips image is calculated by utilizing Q component through the conversion of RGB color model into YIQ color space. The detection of the face region is extracted using basis of knowledge by doing logical calculation of the eye image and lips image. To testify the proposed method, some experiments are performed using front color image down loaded from TV color image. Experimental results showed that face region can be detected in both case of the irrespective location & size of the human face.

Speech Activity Detection using Lip Movement Image Signals (입술 움직임 영상 선호를 이용한 음성 구간 검출)

  • Kim, Eung-Kyeu
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.4
    • /
    • pp.289-297
    • /
    • 2010
  • In this paper, A method to prevent the external acoustic noise from being misrecognized as the speech recognition object is presented in the speech activity detection process for the speech recognition. Also this paper confirmed besides the acoustic energy to the lip movement image signals. First of all, the successive images are obtained through the image camera for personal computer and the lip movement whether or not is discriminated. The next, the lip movement image signal data is stored in the shared memory and shares with the speech recognition process. In the mean time, the acoustic energy whether or not by the utterance of a speaker is verified by confirming data stored in the shared memory in the speech activity detection process which is the preprocess phase of the speech recognition. Finally, as a experimental result of linking the speech recognition processor and the image processor, it is confirmed to be normal progression to the output of the speech recognition result if face to the image camera and speak. On the other hand, it is confirmed not to the output the result of the speech recognition if does not face to the image camera and speak. Also, the initial feature values under off-line are replaced by them. Similarly, the initial template image captured while off-line is replaced with a template image captured under on-line, so the discrimination of the lip movement image tracking is raised. An image processing test bed was implemented to confirm the lip movement image tracking process visually and to analyze the related parameters on a real-time basis. As a result of linking the speech and image processing system, the interworking rate shows 99.3% in the various illumination environments.

Pupil and Lip Detection using Shape and Weighted Vector based on Shape (형태와 가중치 벡터를 이용한 눈동자와 입술 검출)

  • Jang, kyung-Shik
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.5
    • /
    • pp.311-318
    • /
    • 2002
  • In this paper, we propose an efficient method for recognizing pupils and lip in a human face. Pupils are detected by a cost function, which uses features based on the eye's shape and a relation between pupil and eyebrow. The inner boundary of lip is detected by weighted vectors based on lip's shape and on the difference of gray level between lip and face skin. These vectors extract four feature points of lip : the top of the upper lip, the bottom of the lower lip, and the two corners. The experiments have been performed for many images and show very encouraging result.