• Title/Summary/Keyword: 입상슬러지

Search Result 45, Processing Time 0.018 seconds

Extrusion of Pellet-type Adsorbents Employed with Alum Sludge and H2S Removal Performance (알럼 슬러지를 이용한 입상흡착제 압출 및 황화수소 제거 성능)

  • Park, Nayoung;Bae, Junghyun;Lee, Choul Ho;Jeon, Jong-Ki
    • Clean Technology
    • /
    • v.19 no.2
    • /
    • pp.121-127
    • /
    • 2013
  • The objective of this study is optimization of extrusion process for preparation of pellet-type adsorbents employed with alum sludge. Effects of water content and methyl cellulose as a binder on the possibility of extrusion and physical properties of pellet-type adsorbents were investigated. The physical characteristics of the pellet-type adsorbents were studied using nitrogen adsorption and compression strength. With a ratio of water to sludge, 63/100, the adsorbent was well extruded with a cylindrical form and the compressive strength was the highest. With increasing methyl cellulose content, the compressive strength of pellet-type adsorbent could be improved, but the specific surface area decreased. The breakthrough time of the hydrogen sulfide could be increased significantly through calcination and the breakthrough capacity reached to 1,700 mg/g, which seems to be due to increase of surface area during calcination.

Behaviors of Pollutants and Microorganisms in an Anaerobic Digestion of Propionate Containing High Ammonia Nitrogen Level (고농도 암모니아성 질소를 함유한 프로피온산의 혐기성 분해시 오염물질 및 미생물 거동)

  • Lee, Chae-Young;Kim, Dae-Sung;Ahn, Won-Sik;Shin, Hang-Sik
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.3
    • /
    • pp.126-137
    • /
    • 2006
  • Behaviors of simple organic compound and granular sludge in an upflow anaerobic sludge blanket (UASB) reactor treating propionate at high ammonia nitrogen levels were investigated for 12 months. The UASB reactor achieved about 80% removal of chemical oxygen demand (COD) at ammonia nitrogen concentration up to 6000 mg-N/L. At higher concentration of ammonia nitrogen, the propionate in the effluent increased whereas the acetate was very low. At ammonia nitrogen concentration of 8000 mg-N/L, the volatile suspended solids (VSS) increased sharply due probably to the decrease of the content of extracellular polymer (ECP) although methane production was very low. The specific methanogenic activity (SMA) using formate, acetate, and propionate as substrate to granules decreased as ammonia nitrogen concentration increased. The ammonia nitrogen concentration $I^{50}$, causing 50% inhibition of SMA were 2666, 4778 and 5572 mg-N/L, respectively. The kinetic coefficients of ammonia inhibition using formate, acetate, and propionate as substrate were 3.279, 0.999 and 0.609, respectively. The SMA using formate was severely affected by ammonia nitrogen than those using acetate and propionate. This result indicated that the hydrogenotrophic methanogens was most affected by ammonia nitrogen. Granules were mainly composed of microcolonies of methanothrix-like bacteria resembling bamboo-shape, and several other microcolonies including propionate degrader with juxtapositioned syntrophic associations between the hydrogen-producing acetogens and hydrogen-consuming methanogens.

  • PDF

Treatment of Corn Starch Wastewater Using an UASB Reactor (UASB 반응조를 이용한 옥수수 전분폐수의 처리)

  • Shin, Hang-Sik;Bae, Byung-Uk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.269-275
    • /
    • 1993
  • The performance of Upflow Anaerobic Sludge Blanket(UASB) reactor for treatment of corn starch wastewater was investigated using continuous and batch experiment. Results showed that the corn starch wastewater had different characteristics in terms of biodegradability and methane potential, depending on the manufacturing precess. COD removal efficiencies were maintained over 70% up to the loading rate of 3.2 kg $COD/m^3{\cdot}day$ and the maximum gas production rate was about 55 l/day, equivalent to 3.5 l/day per liter of reactor volume, at the loading rate of 8.4 kg $COD/m^3{\cdot}day$. In the anaerobic serum bottle test(SBT) carried out along with continuous operation, the sludge activity was found to increase from 0.03 to 0.53 g $COD-CH_4/g\;VSS{\cdot}day$ as granular sludges were developed in 130 days operation. SBT gave valuable informations on the characteristics of wastewaters to be treated as well as on the sludge activity. The overall morphological characteristics of granular sludges cultivated on corn starch wastewaters were similar to those cultivated on various organic industrial wastewaters such as distillery and sugar.

  • PDF

Continuous Hydrogen Gas production by Immobilized Anaerobic Microorganisms (고정화 혐기성 미생물에 의한 연속적인 수소 생산)

  • 김정옥;김용환;류정용;송봉근;김인호
    • KSBB Journal
    • /
    • v.18 no.2
    • /
    • pp.111-116
    • /
    • 2003
  • Hydrogen producing acidogenic microorganisms were self-immobilized using organic-inorganic hybrid polymer within 5 minutes. During the continuous tratment of synthetic wastewater at a hydraulic retention time of 20 hours, at 37$^{\circ}C$, pH 5.0, the self-immobillized granules were maintained in a stirred tank reactor. The black colored granules gradually became milky. Image analysis showed that the mean diameter of the milky colored granules ranged from 1.5 to 20. mm. The maximum bio-gas procuction rate was 380 ml/L/hy and the concentration of H$_2$was around 50%, while no methane was detected. Granular ECP was extracted and its content was measured to elucidate the role of the organic-inorganic hybrid polymer. Further increases of granule concentration are expected to increase the hydrogen production rate.

Formation and Characteristics of Aerobic Granular Sludge Using Polymer in Sequencing Batch Reactor (연속회분식 장치에서 응집제를 이용한 호기성 입상슬러지 생성 및 특성)

  • Lee, Bong-Seob;Choi, Seong-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.12
    • /
    • pp.1143-1150
    • /
    • 2009
  • This study was carried out to investigate of aerobic granulation by using sequencing batch reactor(SBR). To make aerobic granular sludge in short period of time, we used polymer. In case of SBR, we have studied on physicochemical characteristics of particle size, settling velocity, surface charge, and specific oxygen utilization rate(SOUR) depending on aerobic particle's formation. The results of running SBR with $5.4kg{\cdot}COD/m^3{\cdot}d$ of COD loading rate and 20 days reaction time showed that aerobic particle size, settling velocity, SOUR, surface charge, polysaccharide/protein(PS/PN) ratio were 2.6 mm, 1.7 cm/s, $346mg{\cdot}O_2/g{\cdot}MLVSS{\cdot}hr,\;(-)0.26{\cdot}meq/g{\cdot}MLVSS$, and 2.06 mg/mg respectively.

Adsorption Performance of Basic Gas over Pellet-type Adsorbents Prepared from Water Treatment Sludge (정수장 슬러지로부터 제조한 입상흡착제의 염기성 가스 흡착 성능)

  • Bae, Junghyun;Park, Nayoung;Lee, Choul Ho;Park, Young-Kwon;Jeon, Jong-Ki
    • Korean Chemical Engineering Research
    • /
    • v.51 no.3
    • /
    • pp.352-357
    • /
    • 2013
  • In this study, the pellet-type adsorbents were prepared by extrusion using water treatment sludge. Effects of binder and calcination on physical and chemical properties of pellet-type adsorbents were investigated. The porous structure and surface characteristics of the adsorbents were studied using nitrogen adsorption, compression strength, scanning electron microscope, X-ray diffraction, and infrared spectroscopy of adsorbed pyridine. With increasing of binder content to 5 wt%, the compressive strength of pellet-type adsorbent could be improved more than three times, but the surface area reduced by 30%, and thus the breakthrough time of trimethylamine was shortened. The breakthrough time of the trimethylamine, a basic gas, could be increased more than three times through calcination, which seems to be due to generation of acid sites composed of Lewis acid and Br$\ddot{o}$nsted acid sites on the adsorbent surface.

Lithoautotrophic Nitrogen Removal from Ammonium-rich Wastewater in Aerobic Upflow Sludge Bed(AUSB) Reactor (호기성 상향류 슬러지상 반응조를 이용한 고농도 암모늄 함유폐수의 독립영양 질소제거)

  • Ahn, Young-Ho;Choi, Hoon-Chang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.8
    • /
    • pp.852-859
    • /
    • 2006
  • The novel microbial process such as Anammox(anaerobic ammonium oxidation) and Canon(completely autotrophic nitrogen removal over nitrite) processes is promising biotechnology to remove nitrogen from ammonium-rich wastewater like anaerobic sludge digester liquid. In this research, a new Canon-type nitrogen removal process adopting upflow granular sludge bed type configuration was investigated on its feasibility and process performance, using synthetic wastewater and sludge digester liquids. Air as an oxygen source was provided in an external aeration chamber with flow recirculation. In the first experiment using the synthetic wastewater(up to 110 mg $NH_4$-N $L^{-1}$), the ammonium removal was about 95%(92% for T-N) at effective hydraulic retention time(HRT) for 3.8 days. In the second experiment using the sludge digester liquids($438{\pm}26$ mg $NH_4$-N $L^{-1}$), the total nitrogen removal was $94{\pm}1.7%$ at HRT for 5.4 days and $76{\pm}1.5%$ at HRT for 3.8 days, respectively. Little nitrite and nitrate were observed in the effluent of both experiments. The process revealed quite a lower oxygen($0.29{\sim}0.59$ g $O_2$ $g^{-1}N$) and less alkalinity($3.1{\sim}3.4$ g $CaCO_3$ $g^{-1}N$) consumption as compared to other new technology in microbial nitrogen removal. The process also offers the economical compact reactor configuration with excellent biomass retention, resulting in lower cost for investment and maintenance.

Effect of upflow liquid velocity on size and activity of granular sludge in Expended Granular Sludge Bed(EGSB) reactor (EGSB 반응조 운전시 상향유속이 입상슬러지의 크기 및 활성도에 미치는 영향)

  • 이헌모;정병곤
    • Journal of environmental and Sanitary engineering
    • /
    • v.12 no.2
    • /
    • pp.13-21
    • /
    • 1997
  • The effect of upflow velocity on size distribution and activity of granular sludge was studied in laboratory-scale Expended Granular Sludge Bed(EGSB) reactor fed with non-fat dry milk and sucrose as sole carbon and energy source. High upflow velocity advanced size and activity of granular sludge by distribution and floatation of granular sludge. Therefore, the reactor operation of an apt upflow velocity was needed and an apt upflow velocity in this experimental was estimated to 1-10m/hr.

  • PDF

Effect of the Salt Concentration in Seafood Processing Wastewater on the Anaerobic Ultimate Biodegradability and Multiple Decay Rate of Organic Matter (해산물 가공폐수내 염분농도가 혐기성 최종생분해도와 유기물 다중분해속도에 미치는 영향)

  • Choi, Yong-Bum;Kwon, Jae-Hyouk;Rim, Jay-Myung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.11
    • /
    • pp.1038-1045
    • /
    • 2010
  • In this study, the anaerobic ultimate biodegradability and multiple decay rate of organic matter were evaluated according to various salt concentrations in seafood processing wastewater. The evaluation was also performed with various types of anaerobic bacteria and S/I (substrate/inoculum) ratios. After the S/I ratio was fixed at 0.9, the ultimate biodegradability values of the anaerobic digested sludge and granular sludge were became 72.0% and 92.0%, respectively. The multiple decay rate coefficients ($k_1$) coefficients of the anaerobic digested sludge and granular sludge were $0.0478{\sim}0.1252\;day^{-1}$ and $0.0667{\sim}0.1709\;day^{-1}$, respectively. The optimum S/I ratio of the seafood wastewater, which was determined based on the ultimate anaerobic biodegradability and gas production, was 0.9. The organic matter removal rate never became less than 85.0% under a 3,000 mg/L chloride concentration. The multiple decay rate coefficients ($k_1$) were $0.1603{\sim}0.1709\;day^{-1}$ under $3,000\;mgCl^-/L$, and $0.0492{\sim}0.0760\;day^{-1}$ in more than $6,000\;mgCl^-/L$. The multiple decay rate coefficients ($k_2$) were $0.0183{\sim}0.0348\;day^{-1}$ under $6,000\;mgCl^-/L$, and $0.0154\;day^{-1}$ at $9,000\;mgCl^-/L$. With increasing chloride concentrations, the reaction rate ($k_1$, $k_2$) and ratio of the rapidly degraded organic matter ($S_1$) decreased.