Formation and Characteristics of Aerobic Granular Sludge Using Polymer in Sequencing Batch Reactor

연속회분식 장치에서 응집제를 이용한 호기성 입상슬러지 생성 및 특성

  • Lee, Bong-Seob (Department of Environmental Engineering, Dong-A University) ;
  • Choi, Seong-Woo (Department of Environmental Engineering, Dong-A University)
  • Received : 2009.08.26
  • Accepted : 2009.12.02
  • Published : 2009.12.31

Abstract

This study was carried out to investigate of aerobic granulation by using sequencing batch reactor(SBR). To make aerobic granular sludge in short period of time, we used polymer. In case of SBR, we have studied on physicochemical characteristics of particle size, settling velocity, surface charge, and specific oxygen utilization rate(SOUR) depending on aerobic particle's formation. The results of running SBR with $5.4kg{\cdot}COD/m^3{\cdot}d$ of COD loading rate and 20 days reaction time showed that aerobic particle size, settling velocity, SOUR, surface charge, polysaccharide/protein(PS/PN) ratio were 2.6 mm, 1.7 cm/s, $346mg{\cdot}O_2/g{\cdot}MLVSS{\cdot}hr,\;(-)0.26{\cdot}meq/g{\cdot}MLVSS$, and 2.06 mg/mg respectively.

본 연구는 고분자 응집제를 이용하여 단시간에 입상형태의 슬러지를 제조한 후 연속회분식 장치에 주입하여 호기성 입상화를 시도하였다. 연속회분식 반응조에서 호기성 입자의 형성에 따른 입자의 크기, 침강속도, 표면전하, 비산소 소비율 등의 물리 화학적인 특성을 조사하였다. 입상형태의 슬러지를 연속회분식 장치에 주입하여 COD 부하량 $5.4kg{\cdot}COD/m^3{\cdot}d$로 운전한 결과 운전경과 20일만에 2.6 mm 내외의 호기성 입자를 형성하였으며, 최종형성된 호기성 입자의 침강속도, 비산소 소비율, 표면전하, 다당류/단백질비는 각각 1.7 cm/s, $346mg{\cdot}O_2/g{\cdot}MLVSS{\cdot}hr,\;(-)0.26{\cdot}meq/g{\cdot}MLVSS$, 2.06 mg/mg을 나타내었다.

Keywords

References

  1. Belen A., Anuska M. C., and Juan M. G. , “Aerobic granulation with industrial wastewater in sequencing batch reactors”, Water Res., 38, 3389-3399(2004) https://doi.org/10.1016/j.watres.2004.05.002
  2. Yang S. F., Tay J. H., and Liu Y., “A novel granular sludge sequencing batch reactor for removal of organic and nitrogen from wastewater”, J. Biotechnol., 106, 77-86(2003) https://doi.org/10.1016/j.jbiotec.2003.07.007
  3. Qin, L., Tay J. H., and Liu Y., “Selection pressure is a driving force of aerobic granulation in sequencing batch reactors”, Proc. Biochem., 39, 579-584(2004) https://doi.org/10.1016/S0032-9592(03)00125-0
  4. Qin, L., Liu, Y., and Tay, J. H., “Effect of settling time on aerobic granulation in sequencing batch reactor”, Biochem. Eng. J., 21, 47-52(2004) https://doi.org/10.1016/j.bej.2004.03.005
  5. Hu, L., Wang, J., Wen, X., and Qian, Y., “The formation and characteristics of aerobic granules in sequencing batch reactor(SBR) by seeding anaerobic granules”, Proc. Biochem., 40, 5-11(2005) https://doi.org/10.1016/j.procbio.2003.11.033
  6. Wang, Q., Du, G., and Chen, J., “Aerobic granular sludge cultivated under the selective pressure as a driving force”, Proc. Biochem., 39, 557-563(2005)
  7. El-Mamouni, R., Leduc, R., and Guiot, S. R., “Influence of synthetic and natural polymer on the anaerobic granulation process”, Water. Sci. Technol., 38, 341-347(1998) https://doi.org/10.1016/S0273-1223(98)00710-0
  8. Liu, L., Wang, Z., Yao, J . , Sun, X. , and Cai. W., “Investigation on the formation and kinetics of glucose-fed aerobic granular sludge”, Enzyme and Micro. Tech., 36, 712-716(2005) https://doi.org/10.1016/j.enzmictec.2004.12.024
  9. Tay, J. H., Liu, Q. S., and Liu, Y., “Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor”, J. Appl. Micro., 91, 168-175(2001) https://doi.org/10.1046/j.1365-2672.2001.01367.x
  10. Yang, S. F., Liu, Q. S., Tay, J. H., and Liu, Y., “Growth kinetics of aerobic granules developed in sequencing batch reactors”, Lett. Appl. Microbiol., 38, 106-112(2004) https://doi.org/10.1111/j.1472-765X.2003.01452.x
  11. Zheng, Y. M., Yu, H. Q., and Sheng, G. P., “Physical and chemical characteristics of granular activated sludge from a sequencing batch airlift reactor”, Proc. Biochem., 40, 645-650(2005) https://doi.org/10.1016/j.procbio.2004.01.056
  12. Kim, S. M., Kim, S. H., Choi, H. C., and Kim, I. S., “Enhanced aerobic floc-like granulation and nitrogen removal in a sequencing batch reactor by selection of settling velocity”, Water Sci. Technol., 50, 6, 157-162(2004)
  13. Tay, J. H., Liu, Q. S., and Liu, Y., “The effect of shear force on the formation, structure and metabolism of aerobic granules”, Appl. Microbiol. Biotechnol., 57, 227-233(2001) https://doi.org/10.1007/s002530100766
  14. Tay, J. H., Liu, Q. S., and Liu, Y., “The role of cellular polysaccharides in the formation and stability of aerobic granules”, Lett. Appl. Microbiol., 33, 222-226(2001) https://doi.org/10.1046/j.1472-765x.2001.00986.x
  15. Sutherland, I. W., “Bacterial exopolysaccharides”, Advanced Micro. Physiol., 8, 143-213(1972) https://doi.org/10.1016/S0065-2911(08)60190-3
  16. Marshall, K. C., and Gruickshank, R. H., “Cell surface hydrophobicity and the orientation of certain bacteria at interface”, Arch. Microbiol., 91, 29-40(1973)
  17. Pringle, J. H., Fletcher, M., “Influence of substratum wettability on attachment of fresh bacteria to solid surface”, Appl. Environ. Microbiol., 45, 811-817(1983)