• Title/Summary/Keyword: 입사방향

Search Result 439, Processing Time 0.024 seconds

A Design of Microstrip Directional Coupler with the Improved Directivity Characteristic (개선된 지향성을 갖는 마이크로스트립 방향성 결합기 설계)

  • Kim, Chul-Soo;Lim, Jong-Sik;Kim, Dong-Joo;Ahn, Dal
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.6
    • /
    • pp.548-553
    • /
    • 2004
  • In this paper, single, two, and three-section microstrip directional couplers are implemented for realizing the high directivity characteristics. The achievement of the high directivity with microstrip configuration is carried out by the distributed capacitor to decrease the even and odd mode phase difference. Capacitive compensation is performed by gap coupling of open stub formed in sub-coupled line. Therefore, insertion loss and power handling capability are not affected by the gap coupling. The proposed structure is easy to fabricate and incorporate another microwave device due to the planner microstrip. We designed and fabricated single, two, and three-section directional coupler with 20 ㏈ coupling. In spite of microstrip structure, the capacitive compensation structure shows 30 ㏈, 27 ㏈, and 25 ㏈ of directivity in single, two, and three-section directional couplers, respectively.

Design of Wideband RF Frequency Measurement System with EP2AGX FPGA (EP2AGX FPGA를 이용한 광대역 고주파신호의 주파수 측정장치 설계)

  • Lim, Joong-Soo
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.7
    • /
    • pp.1-6
    • /
    • 2017
  • This paper presents the design of a frequency measurement device using ADC, EP2AGX FPGA and STM32 processor to accurately measure the frequency of a broadband high frequency signal. The ADC device used in this paper has a sampling frequency of 250 MSPS and a processing frequency bandwidth of 100 MHz. Due to its high sampling frequency, it is difficult to process in ordinary computers or processors, so we implemented the frequency measurement algorithm using the Altra EP2AGX FPGA. The measured frequency is sent to the direction detection controller in real time and fused with the phase signal to calculate the incident azimuth angle of the high frequency signal. The designed frequency measurement device is about 0.2 Mhz in frequency measurement error and 30% less than Anaren DFD-x, which is considered to contribute greatly to the design of radio monitoring and direction detection device.

A Study on Signal Sub Spatial Method for Removing Noise and Interference of Mobile Target (이동 물체의 잡음과 간섭제거를 위한 신호 부 공간기법에 대한 연구)

  • Lee, Min-Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.3
    • /
    • pp.224-228
    • /
    • 2015
  • In this paper, we study the method for desired signals estimation that array antennas are received signals. We apply sub spatial method of direction of arrival algorithm and adaptive array antennas in order to remove interference and noise signal of received antenna signals. Array response vector of adaptive array antenna is probability, it is correctly estimation of direction of arrival of targets to update weight signal. Desired signals are estimated updating covariance matrix after moving interference and noise signals among received signals. We estimate signals using eigen decomposition and eigen value, high resolution direction of arrival estimation algorithm is devided signal sub spatial and noise sub spatial. Though simulation, we analyze to compare proposed method with general method.

Level Set based Topological Shape Optimization of Phononic Crystals (음향결정 구조의 레벨셋 기반 위상 및 형상 최적설계)

  • Kim, Min-Geun;Hashimoto, Hiroshi;Abe, Kazuhisa;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.6
    • /
    • pp.549-558
    • /
    • 2012
  • A topology optimization method for phononic crystals is developed for the design of sound barriers, using the level set approach. Given a frequency and an incident wave to the phononic crystals, an optimal shape of periodic inclusions is found by minimizing the norm of transmittance. In a sound field including scattering bodies, an acoustic wave can be refracted on the obstacle boundaries, which enables to control acoustic performance by taking the shape of inclusions as the design variables. In this research, we consider a layered structure which is composed of inclusions arranged periodically in horizontal direction while finite inclusions are distributed in vertical direction. Due to the periodicity of inclusions, a unit cell can be considered to analyze the wave propagation together with proper boundary conditions which are imposed on the left and right edges of the unit cell using the Bloch theorem. The boundary conditions for the lower and the upper boundaries of unit cell are described by impedance matrices, which represent the transmission of waves between the layered structure and the semi-infinite external media. A level set method is employed to describe the topology and the shape of inclusions. In the level set method, the initial domain is kept fixed and its boundary is represented by an implicit moving boundary embedded in the level set function, which facilitates to handle complicated topological shape changes. Through several numerical examples, the applicability of the proposed method is demonstrated.

Acoustic Band Structures in Two-dimensional Phononic Crystals with a Square Lattice in Water (수중에서 정방형 격자를 갖는 2차원 포노닉 크리스탈의 음향 밴드 구조)

  • Kim, Yoon Mi;Lee, Kang Il;Kang, Hwi Suk;Yoon, Suk Wang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.5
    • /
    • pp.335-342
    • /
    • 2015
  • Phononic crystals are composite materials consisting of a periodic arrangement of scattering inclusions in a host material. One of the most important properties of phononic crystals is the existence of band gaps, i.e., ranges of frequencies at which acoustic waves cannot propagate through the structure. The present study aims to investigate theoretically and experimentally the acoustic band structures in two-dimensional (2D) phononic crystals consisting of periodic square arrays of stainless steel solid cylinders with a diameter of 1 mm and a lattice constant of 1.5 mm in water. The theoretical dispersion relation that depicts the relationship between the frequency and the wave vector was calculated along the ${\Gamma}X$ direction of the first Brillouin zone using the finite element method to predict the band structures in the 2D phononic crystals. The transmission and the reflection coefficients were measured in the 2D phononic crystals with 1, 3, 5, 7, and 9 layers of stainless steel cylinders stacked in the perpendicular direction to propagation at normal incidence. The theoretical dispersion relation exhibited five band gaps at frequencies below 2 MHz, the first gap appearing around a frequency of 0.5 MHz. The location and the width of the band gaps experimentally observed in the transmission and the reflection coefficients appeared to coincide well with those determined from the theoretical dispersion relation.

Construction of voxel head phantom and application to BNCT dose calculation (Voxel 머리팬텀 제작 및 붕소중성자포획요법 선량계산에의 응용)

  • Lee, Choon-Sik;Lee, Choon-Ik;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.2
    • /
    • pp.93-99
    • /
    • 2001
  • Voxel head phantom for overcoming the limitation of mathematical phantom in depleting anatomical details was constructed and example dose calculation for BNCT was performed. The repeated structure algorithm of the general purpose Monte Carlo code, MCNP4B was applied for yokel Monte Carlo calculation. Simple binary yokel phantom and combinatorial geometry phantom composed of two materials were constructed for validating the voxel Monte Carlo calculation system. The tomographic images of VHP man provided by NLM(National Library of Medicine) were segmented and indexed to construct yokel head phantom. Comparison of doses for broad parallel gamma and neutron beams in AP and PA directions showed decrease of brain dose due to the attenuation of neutron in eye balls in case of yokel head phantom. The spherical tumor volume with diameter, 5cm was defined in the center of brain for BNCT dose calculation in which accurate 3 dimensional dose calculation is essential. As a result of BNCT dose calculation for downward neutron beam of 10keV and 40keV, the tumor dose is about doubled when boron concentration ratio between the tumor to the normal tissue is $30{\mu}g/g$ to $3{\mu}g/g$. This study established the voxel Monte Carlo calculation system and suggested the feasibility of precise dose calculation in therapeutic radiology.

  • PDF

An Experimental Study of Sand Beach Profile Evolution under Regular Waves Corresponding to Storm and Normal Conditions (규칙파 조건에서의 사질해안 폭풍파와 평상파 단면변화 실험연구)

  • Choi, Junwoo;Roh, Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.333-342
    • /
    • 2017
  • In order to understand the mechanism of the cross-shore evolution of storm (barred) and normal (nonbarred) profiles of a sandy beach, the vertically two-dimensional laboratory experiment was performed with a movable bed. The beach profiles and free surface motion were measured under monochromatic wave conditions evolving the storm and normal beach profiles. The observation was conducted in the surf zone during the alternation of the two wave conditions to reach its quasi-equilibrium state. The sandbar-crest and trough and the steep berm were evolved due to the plunging breakers in the storm case, and the bar-trough was decayed due to the spilling breakers in the normal case. From the measurements, it was found that the storm wave case was in an erosion state and the normal wave case was in an accretion state. The strong undertow, which is a dominant factor of the offshore migration mechanism, was developed in the storm wave case, and the weak undertow was developed in the normal wave case. The skewness and the asymmetry of the nonlinear wave motion, which is a dominant factor of the onshore migration mechanism, was measured similarly in both cases.

IMRT optimization on multiple slice using gradient based algorithm (Gradient based algorithm을 이용한 multiple slice IMRT optimization)

  • Lee, Byung-Yong;Cho, Byung-Chul;Lee, Seok;Jung, Won-Kyun;An, Seung-Do;Choi, Eun-Kyung;Kim, Jong-Hoon;Jang, Hye-Sook
    • Progress in Medical Physics
    • /
    • v.9 no.4
    • /
    • pp.201-206
    • /
    • 1998
  • IMRT optimization method on multiple slice has been developed by using gradient based algorithm. On about 10-30 CT slices including treatment region of a patient, dose optimization has been performed slice by slice to meet the condition that each organ should be exposed below maximum tolerable doses and that the tumor dose within the range of 100$\pm$5 %. Field size was limited to 8$\times$8 cm$^2$ and in this condition, beam divergence was not taken into account to calculate dose distribution. Total dose distribution was calculated by superposing each beamlet whose dose distribution had been precalculated. In order to investigate beam number dependency, dose optimization was performed for one, three, five, seven, and nine coplanar beams and then each optimization index was evaluated. It is found that optimization time was proportional to number of slices to be optimized, and the most efficient plan was obtained from the case of three-to-seven incident beams with respect to calculation time and optimization index. In conclusion, dose optimization of multiple slice was able to be obtained by repeating dose optimization of single slice under condition that the beam size is not too large to ignore beam divergence. And it turns out that result of dose optimization was so sensitive to the position of isocenter that some method to optimize isocenter position is needed to improve it.

  • PDF

Performance Analysis of MVDR and RLS Beamforming Using Systolic Array Structure (시스토릭 어레이 구조를 갖는 최소분산 비왜곡응답 및 최소자승 회귀 빔형성기법 성능 분석)

  • 이호중;서상우;이원철
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.1-6
    • /
    • 2003
  • This paper analyses the performance of either the minimum variance distortionless response (MVDR) or the recursive least square (RLS) beamformer structured on the systolic array. Provided that the snapshot vector including the desired user's signal and the interferences with the noise is received at the array antenna. In order to improve the quality of received signal, MVDR or RLS algorithm can be utilized to update the beamformer weights recursively. Furthermore to increase the channel capacity, by the usage of the above schemes, the effect of the spatial filtering can be obtained which constructively combining multipath components corresponding to the desired user whereas the multiple access interferences (MAI) is nulled out on spatial domain. This paper introduces the MVDR and RLS beamformer structured on systolic array conducting the spatial filtering, and its performance under the multipath fading channel in the presence of multiple access interferences will be analyzed. To show the superior spatial filtering performances of the proposed scheme employing the systolic way structured beamformer, the computer simulations are carried out. And the validity of practical deployment of the proposed scheme will be confirmed throughout showing the BER behaviors and the beampatterns.

Construction of MIRD-type Korean Adult Male Phantom and Calculation of Dose Conversion Coefficients for Photon (한국 성인남성 MIRD형 모의피폭체 제작 및 광자 외부피폭 선량환산인자 산출)

  • Park, Sang-Hyun;Lee, Choon-Sik;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.2
    • /
    • pp.97-104
    • /
    • 2004
  • MIRD-type Korean adult male phantom, 'KMIRD' was constructed to calculate Korean-specific dosimetric quantities for radiation protection consideration. The external shape of KMIRD was based on national physical standard data of Korean. KMIRD has thicket trunk than MIRD5 and arm models divided from trunk. The height and weight of the KMIRD are 171 cm and 63.8 kg. ICRP23 data were referred to constitute organs and tissues of KMIRD. However nine organs were constructed based on Korean reference data provided by Radiation Health Research Institute. In the present study, the MCNPX2.3 Monte Carlo transport code was combined with KMIRD to calculate dose conversion coefficients for photon in the energy range from 0.05 to 10 MeV. The simulated irradiation geometries are broad parallel photon beams in AP, PA, LLAT and RLAT direction. Absorbed dose conversion coefficients were compared with data calculated with MIRD5, MIRD-type phantom based on ICRP23 reference man. In some organs, the discrepancies between two phantoms amount up to nearly 30%. The effective doses conversion coefficients of KMIRD are lower than those of MIRD5. The dose discrepancies between two MIRD-type phantoms ate because of physical differences between Korean and Western, also geometric differences between two phantoms. KMIRD should be revised using the full set of Korean reference data of all organs. The developed MIRD-type Korean adult male phantom can be applied to dose assessment of internal exposure.