• Title/Summary/Keyword: 입력처리 지도

Search Result 1,640, Processing Time 0.028 seconds

Optimal Design Space Exploration of Multi-core Architecture for Real-time Lane Detection Algorithm (실시간 차선인식 알고리즘을 위한 최적의 멀티코어 아키텍처 디자인 공간 탐색)

  • Jeong, Inkyu;Kim, Jongmyon
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.3
    • /
    • pp.339-349
    • /
    • 2017
  • This paper proposes a four-stage algorithm for detecting lanes on a driving car. In the first stage, it extracts region of interests in an image. In the second stage, it employs a median filter to remove noise. In the third stage, a binary algorithm is used to classify two classes of backgrond and foreground of an input image. Finally, an image erosion algorithm is utilized to obtain clear lanes by removing noises and edges remained after the binary process. However, the proposed lane detection algorithm requires high computational time. To address this issue, this paper presents a parallel implementation of a real-time line detection algorithm on a multi-core architecture. In addition, we implement and simulate 8 different processing element (PE) architectures to select an optimal PE architecture for the target application. Experimental results indicate that 40×40 PE architecture show the best performance, energy efficiency and area efficiency.

Application of 4th Industrial Revolution Technology to Implement Smart-Eco River (스마트 에코 리버 구현을 위한 4차산업혁명 기술의 적용)

  • Kim, Sunghoon;Jang, Suhyung;Lee, Eulrae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.11-11
    • /
    • 2020
  • 18년 물관리일원화 이후 인프라와 사람 중심으로부터 자연과 인간의 조화를 위한 환경·생태계의 자연성 회복으로의 물관리 패러다임 전환이 빠르게 이루어지고 있으며, 대규모 국책사업이후의 하천 관리에 있어서도 기존의 이수, 치수, 환경이라는 단순한 기능적 구분을 벗어나 보다 근본적이고 장기적인 대국민 서비스로의 전환을 도모하고 있다. 또한, ICBAM 등으로 정의되는 4차산업혁명 기반 기술의 접목이 거의 대부분의 분야에서 이루어지고 있는 것을 실질적으로 체감하는 시기가 도래하였다. 그러나, 하천 및 수자원 관리분야에서의 기술은 근대 엔지니어링의 기초가 되는 수로 건설 등으로부터 시발되어 사실상 가장 앞선 과학적 진보의 토대를 갖추었으나 최근의 기술적 트렌드를 잘 추종하지 못하는 것처럼 비추어 지는 것이 사실이다. 주된 이유로서 기후변화라는 광범위하고 장기적인 입력요소를 가진 하천관리 시스템의 특성상 불확실성의 추정 및 즉각적인 응답이 어려운 부분이 분명히 존재하지만, 실질적으로 여전히 해소되지 않는 부분은 하천의 기초자료 수집에 대한 효율성과 신뢰도가 낮은 것이라고 하겠다. 또한, 유역으로부터 댐-다기능보-하천으로 이어지는 의사결정을 위한 다양한 형태의 자료로부터 적절한 정보를 수집하는 체계(거버넌스의 문제이자 기술적/재정적 한계)가 확립되지 않은 점도 고려해야 할 것이다. 본 연구에서는 인공지능을 활용한 하천의 유량 예측 등을 위해 필요한 수자원 기초데이터의 근원적인 수집 및 관리상의 문제점에 대해서 검토하고자 하였으며, ARIMA, Kalman Filtering, MA 및 복합기법을 통한 자료처리 기법을 적용하여 상황에 맞게 오차 및 불확실성의 저감을 위한 방안을 찾고자 하였다. 또한, 이용자 중심의 하천 관리에 근접한다고 볼 수 있는 스마트워터시티 개념에서의 바람직한 하천관리 기법에 대해서 논의하고, 관련하여 근자에 개발한 하천의 물리적 해석 도구들에 대해서 적용 사례를 검토한다. 마지막으로, 지식기반의 하천관리 의사결정 플랫폼 개발을 위해서 기존의 기계학습을 통한 자동화된 의사결정에 부가하여 전문가와 시스템이 상호작용을 통해서 AI를 학습시켜 결정한 사항을 전문가의 의사결정에 참고하는 MCRDR기법의 적용의 적용 가능성과 도입 방향에 대해서 논의하였다.

  • PDF

A Research on Image Metadata Extraction through YCrCb Color Model Analysis for Media Hyper-personalization Recommendation (미디어 초개인화 추천을 위한 YCrCb 컬러 모델 분석을 통한 영상의 메타데이터 추출에 대한 연구)

  • Park, Hyo-Gyeong;Yong, Sung-Jung;You, Yeon-Hwi;Moon, Il-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.277-280
    • /
    • 2021
  • Recently as various contents are mass produced based on high accessibility, the media contents market is more active. Users want to find content that suits their taste, and each platform is competing for personalized recommendations for content. For an efficient recommendation system, high-quality metadata is required. Existing platforms take a method in which the user directly inputs the metadata of an image. This will waste time and money processing large amounts of data. In this paper, for media hyperpersonalization recommendation, keyframes are extracted based on the YCrCb color model of the video based on movie trailers, movie genres are distinguished through supervised learning of artificial intelligence and In the future, we would like to propose a utilization plan for generating metadata.

  • PDF

A Study on Construction Method of AI based Situation Analysis Dataset for Battlefield Awareness

  • Yukyung Shin;Soyeon Jin;Jongchul Ahn
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.37-53
    • /
    • 2023
  • The AI based intelligent command and control system can automatically analyzes the properties of intricate battlefield information and tactical data. In addition, commanders can receive situation analysis results and battlefield awareness through the system to support decision-making. It is necessary to build a battlefield situation analysis dataset similar to the actual battlefield situation for learning AI in order to provide decision-making support to commanders. In this paper, we explain the next step of the dataset construction method of the existing previous research, 'A Virtual Battlefield Situation Dataset Generation for Battlefield Analysis based on Artificial Intelligence'. We proposed a method to build the dataset required for the final battlefield situation analysis results to support the commander's decision-making and recognize the future battlefield. We developed 'Dataset Generator SW', a software tool to build a learning dataset for battlefield situation analysis, and used the SW tool to perform data labeling. The constructed dataset was input into the Siamese Network model. Then, the output results were inferred to verify the dataset construction method using a post-processing ranking algorithm.

Object Tracking Using Adaptive Scale Factor Neural Network (적응형 스케일조절 신경망을 이용한 객체 위치 추적)

  • Sun-Bae Park;Do-Sik Yoo
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.522-527
    • /
    • 2022
  • Object tracking is a field of signal processing that sequentially tracks the location of an object based on the previous-time location estimations and the present-time observation data. In this paper, we propose an adaptive scaling neural network that can track and adjust the scale of the input data with three recursive neural network (RNN) submodules. To evaluate object tracking performance, we compare the proposed system with the Kalman filter and the maximum likelihood object tracking scheme under an one-dimensional object movement model in which the object moves with piecewise constant acceleration. We show that the proposed scheme is generally better, in terms of root mean square error (RMSE) performance, than maximum likelihood scheme and Kalman filter and that the performance gaps grow with increased observation noise.

Development of Product Recommendation System Using MultiSAGE Model and ESG Indicators (MultiSAGE 모델과 ESG 지표를 적용한 상품 추천 시스템 개발)

  • Hyeon-woo Kim;Yong-jun Kim;Gil-sang Yoo
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.69-78
    • /
    • 2024
  • Recently, consumers have shown an increasing tendency to seek information related to environmental, social, and governance (ESG) aspects in order to choose products with higher social value and environmental friendliness. In this paper, we proposes a product recommendation system applying ESG indicators tailored to the recent consumer trend of value-based consumption, utilizing a model called MultiSAGE that combines GraphSAGE and GAT. To achieve this, ESG rating data for 1,033 companies in 2022 collected from the Korea ESG Standard Institute and actual product data from N companies were transformed into a Heterogeneous Graph format through a data processing pipeline. The MultiSAGE model was then applied in machine learning to implement a recommendation system that, given a specific product, suggests eco-friendly alternatives. The implementation results indicate that consumers can easily compare and purchase products with ESG indicators applied, and it is anticipated that this system will be utilized in recommending products with social value and environmental friendliness.

Effect of Exercise Behavior Change of Casino Securities on Their Self-efficacy (카지노 시큐리티 종사자의 운동행동 변화과정이 자기효능감에 미치는 효과)

  • Chun, Yong-Tae
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.8
    • /
    • pp.285-293
    • /
    • 2009
  • The purpose of this study is to closely examine the effect of exercise behavior change of casino securities on their Self-efficacy. This observation takes place in casino enterprises in the whole country. Within these areas, we set the selected employees as the targeted sampling unit, we extracted the specimen, using the stratified cluster random sampling with the quota sampling, putting a weigh on the specimen of focused areas. Among 420 persons sampling unit, we have excluded 47 copied which seem to be insincere, and actually used 373 copies in this study. Evaluation forms are used as a study method; each form consists of continuance 5 points Likert scales and nominal/proportional scaling and used after excluding a test through the analysis of validity and reliability. After encoding and inputting the framing completed data along with each purpose, it was computerized by computer process, making use of SPSS 15.0 version. Through the data analysis according to these methods and procedures, the result on this study is described below. First, the exercise behavior change process the self-efficacy according to socio-demographic characteristics make a difference. Second, the self-efficacy according to socio-demographic characteristics make a difference. Third, the exercise behavior change process influence on the self-efficacy.

Deep Learning OCR based document processing platform and its application in financial domain (금융 특화 딥러닝 광학문자인식 기반 문서 처리 플랫폼 구축 및 금융권 내 활용)

  • Dongyoung Kim;Doohyung Kim;Myungsung Kwak;Hyunsoo Son;Dongwon Sohn;Mingi Lim;Yeji Shin;Hyeonjung Lee;Chandong Park;Mihyang Kim;Dongwon Choi
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.143-174
    • /
    • 2023
  • With the development of deep learning technologies, Artificial Intelligence powered Optical Character Recognition (AI-OCR) has evolved to read multiple languages from various forms of images accurately. For the financial industry, where a large number of diverse documents are processed through manpower, the potential for using AI-OCR is great. In this study, we present a configuration and a design of an AI-OCR modality for use in the financial industry and discuss the platform construction with application cases. Since the use of financial domain data is prohibited under the Personal Information Protection Act, we developed a deep learning-based data generation approach and used it to train the AI-OCR models. The AI-OCR models are trained for image preprocessing, text recognition, and language processing and are configured as a microservice architected platform to process a broad variety of documents. We have demonstrated the AI-OCR platform by applying it to financial domain tasks of document sorting, document verification, and typing assistance The demonstrations confirm the increasing work efficiency and conveniences.

Smart Browser based on Semantic Web using RFID Technology (RFID 기술을 이용한 시맨틱 웹 기반 스마트 브라우저)

  • Song, Chang-Woo;Lee, Jung-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.12
    • /
    • pp.37-44
    • /
    • 2008
  • Data entered into RFID tags are used for saving costs and enhancing competitiveness in the development of applications in various industrial areas. RFID readers perform the identification and search of hundreds of objects, which are tags. RFID technology that identifies objects on request of dynamic linking and tracking is composed of application components supporting information infrastructure. Despite their many advantages, existing applications, which do not consider elements related to real.time data communication among remote RFID devices, cannot support connections among heterogeneous devices effectively. As different network devices are installed in applications separately and go through different query analysis processes, there happen the delays of monitoring or errors in data conversion. The present study implements a RFID database handling system in semantic Web environment for integrated management of information extracted from RFID tags regardless of application. Users’ RFID tags are identified by a RFID reader mounted on an application, and the data are sent to the RFID database processing system, and then the process converts the information into a semantic Web language. Data transmitted on the standardized semantic Web base are translated by a smart browser and displayed on the screen. The use of a semantic Web language enables reasoning on meaningful relations and this, in turn, makes it easy to expand the functions by adding modules.

Developing a Neural-Based Credit Evaluation System with Noisy Data (불량 데이타를 포함한 신경망 신용 평가 시스템의 개발)

  • Kim, Jeong-Won;Choi, Jong-Uk;Choi, Hong-Yun;Chuong, Yoon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.1 no.2
    • /
    • pp.225-236
    • /
    • 1994
  • Many research result conducted by neural network researchers claimed that the degree of generalization of the neural network system is higher or at least equal to that of statistical methods. However, those successful results could be brought only if the neural network was trained by appropriately sound data, having a little of noisy data and being large enough to control noisy data. Real data used in a lot of fields, especially business fields, were not so sound that the network have frequently failed to obtain satisfactory prediction accuracy, the degree of generalization. Enhancing the degree of generalization with noisy data is discussed in this study. The suggestion, which was obtained through a series of experiments, to enhance the degree of generalization is to remove inconsistent data by checking overlapping and inconsistencies. Furthermore, the previous conclusion by other reports is also confirmed that the learning mechanism of neural network takes average value of two inconsistent data included in training set[2]. The interim results of on-going research project are reported in this paper These are ann architecture of the neural network adopted in this project and the whole idea of developing on-line credit evaluation system,being intergration of the expert(resoning)system and the neural network(learning system.Another definite result is corroborated through this study that quickprop,being agopted as a learing algorithm, also has more speedy learning process than does back propagation even in very noisy environment.

  • PDF