• Title/Summary/Keyword: 입력기

Search Result 4,423, Processing Time 0.029 seconds

The difference of image quality using other radioactive isotope in uniformity correction map of myocardial perfusion SPECT (심근 관류 SPECT에서 핵종에 따른 Uniformity correction map 설정을 통한 영상의 질 비교)

  • Song, Jae hyuk;Kim, Kyeong Sik;Lee, Dong Hoon;Kim, Sung Hwan;Park, Jang Won
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.19 no.2
    • /
    • pp.87-92
    • /
    • 2015
  • Purpose When the patients takes myocardial perfusion SPECT using $^{201}Tl$, the operator gives the patients an injection of $^{201}Tl$. But the uniformity correction map in SPECT uses $^{99m}Tc$ uniformity correction map. Thus, we want to compare the image quality when it uses $^{99m}Tc$ uniformity correction map and when it uses $^{201}Tl$ uniformity correction map. Materials and Methods Phantom study is performed. We take the data by Asan medical center daily QC condition with flood phantom including $^{201}Tl$ 21.3 kBq/mL. After postprocessing with this data, we analyze CFOV integral uniformity(I.U) and differential uniformity(D.U). And we take the data with Jaszczak ECT Phantom by American college of radiology accreditation program instruction including $^{201}Tl$ 33.4 kBq/mL. After post processing with this data, we analyze spatial Resolution, Integral Uniformity(I.U), coefficient of variation(C.V) and Contrast with Interactive data language program. Results In the flood phantom test, when it uses $^{99m}Tc$ uniformity correction map, Flood I.U is 3.6% and D.U is 3.0%. When it uses $^{201}Tl$ uniformity correction map, Flood I.U is 3.8% and D.U is 2.1%. The flood I.U is worsen about 5%, but the D.U is improved about 30% inversely. In the Jaszczak ECT phantom test, when it uses $^{99m}Tc$ uniformity correction map, SPECT I.U, C.V and contrast is 13.99%, 4.89% and 0.69. When it uses $^{201}Tl$ uniformity correction map, SPECT I.U, C.V and contrast is 11.37%, 4.79% and 0.78. All of data are improved about 18%, 2%, 13% The spatial resolution was no significant changes. Conclusion In the flood phantom test, Flood I.U is worsen but Flood D.U is improved. Therefore, it's uncertain that an image quality is improved with flood phantom test. On the other hand, SPECT I.U, C.V, Contrast are improved about 18%, 2%, 13% in the Jaszczak ECT phantom test. This study has limitations that we can't take all variables into account and study with two phantoms. We need think about things that it has a good effect when doctors decipher the nuclear medicine image and it's possible to improve the image quality using the uniformity correction map of other radionuclides other than $^{99m}Tc$, $^{201}Tl$ when we make other nuclear medicine examinations.

  • PDF

A Study on Developing Customized Bolus using 3D Printers (3D 프린터를 이용한 Customized Bolus 제작에 관한 연구)

  • Jung, Sang Min;Yang, Jin Ho;Lee, Seung Hyun;Kim, Jin Uk;Yeom, Du Seok
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.1
    • /
    • pp.61-71
    • /
    • 2015
  • Purpose : 3D Printers are used to create three-dimensional models based on blueprints. Based on this characteristic, it is feasible to develop a bolus that can minimize the air gap between skin and bolus in radiotherapy. This study aims to compare and analyze air gap and target dose at the branded 1 cm bolus with the developed customized bolus using 3D printers. Materials and Methods : RANDO phantom with a protruded tumor was used to procure images using CT simulator. CT DICOM file was transferred into the STL file, equivalent to 3D printers. Using this, customized bolus molding box (maintaining the 1 cm width) was created by processing 3D printers, and paraffin was melted to develop the customized bolus. The air gap of customized bolus and the branded 1 cm bolus was checked, and the differences in air gap was used to compare $D_{max}$, $D_{min}$, $D_{mean}$, $D_{95%}$ and $V_{95%}$ in treatment plan through Eclipse. Results : Customized bolus production period took about 3 days. The total volume of air gap was average $3.9cm^3$ at the customized bolus. And it was average $29.6cm^3$ at the branded 1 cm bolus. The customized bolus developed by the 3D printer was more useful in minimizing the air gap than the branded 1 cm bolus. In the 6 MV photon, at the customized bolus, $D_{max}$, $D_{min}$, $D_{mean}$, $D_{95%}$, $V_{95%}$ of GTV were 102.8%, 88.1%, 99.1%, 95.0%, 94.4% and the $D_{max}$, $D_{min}$, $D_{mean}$, $D_{95%}$, $V_{95%}$ of branded 1cm bolus were 101.4%, 92.0%, 98.2%, 95.2%, 95.7%, respectively. In the proton, at the customized bolus, $D_{max}$, $D_{min}$, $D_{mean}$, $D_{95%}$, $V_{95%}$ of GTV were 104.1%, 84.0%, 101.2%, 95.1%, 99.8% and the $D_{max}$, $D_{min}$, $D_{mean}$, $D_{95%}$, $V_{95%}$ of branded 1cm bolus were 104.8%, 87.9%, 101.5%, 94.9%, 99.9%, respectively. Thus, in treatment plan, there was no significant difference between the customized bolus and 1 cm bolus. However, the normal tissue nearby the GTV showed relatively lower radiation dose. Conclusion : The customized bolus developed by 3D printers was effective in minimizing the air gap, especially when it is used against the treatment area with irregular surface. However, the air gap between branded bolus and skin was not enough to cause a change in target dose. On the other hand, in the chest wall could confirm that dose decrease for small the air gap. Customized bolus production period took about 3 days and the development cost was quite expensive. Therefore, the commercialization of customized bolus developed by 3D printers requires low-cost 3D printer materials, adequate for the use of bolus.

  • PDF

An accuracy analysis of Cyberknife tumor tracking radiotherapy according to unpredictable change of respiration (예측 불가능한 호흡 변화에 따른 사이버나이프 종양 추적 방사선 치료의 정확도 분석)

  • Seo, jung min;Lee, chang yeol;Huh, hyun do;Kim, wan sun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.2
    • /
    • pp.157-166
    • /
    • 2015
  • Purpose : Cyber-Knife tumor tracking system, based on the correlation relationship between the position of a tumor which moves in response to the real time respiratory cycle signal and respiration was obtained by the LED marker attached to the outside of the patient, the location of the tumor to predict in advance, the movement of the tumor in synchronization with the therapeutic device to track real-time tumor, is a system for treating. The purpose of this study, in the cyber knife tumor tracking radiation therapy, trying to evaluate the accuracy of tumor tracking radiation therapy system due to the change in the form of unpredictable sudden breathing due to cough and sleep. Materials and Methods : Breathing Log files that were used in the study, based on the Respiratory gating radiotherapy and Cyber-knife tracking radiosurgery breathing Log files of patients who received herein, measured using the Log files in the form of a Sinusoidal pattern and Sudden change pattern. it has been reconstituted as possible. Enter the reconstructed respiratory Log file cyber knife dynamic chest Phantom, so that it is possible to implement a motion due to respiration, add manufacturing the driving apparatus of the existing dynamic chest Phantom, Phantom the form of respiration we have developed a program that can be applied to. Movement of the phantom inside the target (Ball cube target) was driven by the displacement of three sizes of according to the size of the respiratory vertical (Superior-Inferior) direction to the 5 mm, 10 mm, 20 mm. Insert crosses two EBT3 films in phantom inside the target in response to changes in the target movement, the End-to-End (E2E) test provided in Cyber-Knife manufacturer depending on the form of the breathing five times each. It was determined by carrying. Accuracy of tumor tracking system is indicated by the target error by analyzing the inserted film, additional E2E test is analyzed by measuring the correlation error while being advanced. Results : If the target error is a sine curve breathing form, the size of the target of the movement is in response to the 5 mm, 10 mm, 20 mm, respectively, of the average $1.14{\pm}0.13mm$, $1.05{\pm}0.20mm$, with $2.37{\pm}0.17mm$, suddenly for it is variations in breathing, respective average $1.87{\pm}0.19mm$, $2.15{\pm}0.21mm$, and analyzed with $2.44{\pm}0.26mm$. If the correlation error can be defined by the length of the displacement vector in the target track is a sinusoidal breathing mode, the size of the target of the movement in response to 5 mm, 10 mm, 20 mm, respective average $0.84{\pm}0.01mm$, $0.70{\pm}0.13mm$, with $1.63{\pm}0.10mm$, if it is a variant of sudden breathing respective average $0.97{\pm}0.06mm$, $1.44{\pm}0.11mm$, and analyzed with $1.98{\pm}0.10mm$. The larger the correlation error values in both the both the respiratory form, the target error value is large. If the motion size of the target of the sine curve breathing form is greater than or equal to 20 mm, was measured at 1.5 mm or more is a recommendation value of both cyber knife manufacturer of both error value. Conclusion : There is a tendency that the correlation error value between about target error value magnitude of the target motion is large is increased, the error value becomes large in variation of rapid respiration than breathing the form of a sine curve. The more the shape of the breathing large movements regular shape of sine curves target accuracy of the tumor tracking system can be judged to be reduced. Using the algorithm of Cyber-Knife tumor tracking system, when there is a change in the sudden unpredictable respiratory due patient coughing during treatment enforcement is to stop the treatment, it is assumed to carry out the internal target validation process again, it is necessary to readjust the form of respiration. Patients under treatment is determined to be able to improve the treatment of accuracy to induce the observed form of regular breathing and put like to see the goggles monitor capable of the respiratory form of the person.

  • PDF