• Title/Summary/Keyword: 입구 경계층 두께

검색결과 13건 처리시간 0.019초

Three-dimensional Flow and Aerodynamic Loss Downstream of First-Stage Turbine Vane Cascade (터빈 제1단 정익 익렬 하류에서의 3차원 유동 및 압력손실)

  • Jeong, Jae Sung;Bong, Seon Woo;Lee, Sang Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제41권8호
    • /
    • pp.521-529
    • /
    • 2017
  • Three-dimensional flow characteristics within a high-acceleration first-stage turbine vane passage has been investigated in a newly-built vane cascade for propulsion. The result shows that there is a strong favorable pressure gradient on the vane pressure surface. On its suction surface, however, there exists not only a much stronger favorable pressure gradient than that on the pressure surface upstream of the mid-chord but also a subsequent adverse pressure gradient downstream of it. By employing two different oil-film methods with upstream coating and full-coverage coating, a four-vortex model horseshoe vortex system can be identified ahead of each leading edge in the cascade, and the separation line of inlet boundary layer flow as well as the separation line of re-attached flow is provided as well. In addition, basic flow data such as secondary flow, aerodynamic loss, and flow turning angle downstream of the cascade are obtained.

Formation and Evolution of the Paleo-Seomjin River Incised-Valley System, Southern Coast of Korea: 1. Sequence Stratigraphy of Late Quaternary Sediments in Yosu Strait (한반도 남해안 고섬진강 절개곡 시스템의 형성과 진화: 1. 여수해협의 후기 제 4기층에 대한 순차층서)

  • Chun, Seung-Soo;Chang, Jin-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • 제6권3호
    • /
    • pp.142-151
    • /
    • 2001
  • Detailed interpretation of some high-resolution seismic profiles in Yosu Strait reveals that Late Quaternary deposits consist of three allostratigraphic units (UH, LH, PL) formed by fluvial and tidal controls. The top mud unit, UH, thins onshore, and overlies the backstepping modem Seomjin delta deposits, which is interpreted as a transgressive systems tract (757) related to Holocene relative sea-level rise. The unit LH below the unit UH is composed of delta, valley- and basin-fill facies. The delta facies (Unit $LH_1$) occurs only in Gwangyang Bay and shows two prograding sets retrogradationaly stacked, thus it is also interpreted as a transgressive systems tract(757). On the contrary, the valley- and basin-fill facies (Unit $LH_2$), interpreted as 757, occur between the units UH and PL (Pleistocene deposits) in Yosu Strait. The bounding surface between UH and $LH_2$ can be interpreted as a tidal ravinement surface on the basis of trends thinning toward inner bay and becoming young landward. Furthermore its geomorphological pattern is similar to that of recent tidal channels. This allostratigraphy in'ffsu Strait suggests that two 757 deposits (UH and $LH_2$), divided by tidal ravinement surface, have been formed in Yosu Strait, whereas in Gwangyang Bay backstepping delta deposits ($LH_1$) without tidal ravinement surface have been formed during Holocene sea-level rise. These characteristics indicate that different stacking patterns could be formed in these two areas according to different increasing rate of accommodation space caused by different geomorphology, sediment supply and tidal-current patterns even in the same period of Holocene sea-level rise.

  • PDF

Evaluation of the Sealing Capacity of the Supercritical CO2 by the Measurement of Its Injection Pressure into the Tuff and the Mudstone in the Janggi Basin (초임계이산화탄소(scCO2) 주입압력 측정에 의한 장기분지 응회암과 이암의 scCO2 차폐능 평가)

  • An, Jeongpil;Lee, Minhee;Wang, Sookyun
    • Economic and Environmental Geology
    • /
    • 제50권4호
    • /
    • pp.303-311
    • /
    • 2017
  • The laboratory scale experiment was performed to evaluate the sealing capacity of the capping rock such as tuff and mudstone, measuring the intial supercritical $CO_2$ ($scCO_2$) injection pressure and the $scCO_2$-water-rock reaction for 90 days. The drilling cores sampled from 800 m in depth around the Janggi basin, Korea were used for the experiment. The mineralogical changes of mudstone and tuff were measured to evaluate the geochemical stability during the $scCO_2$-water-rock reaction at $CO_2$ storage condition (100 bar and $50^{\circ}C$). The rock core was fixed in the high pressurized stainless steel cell and was saturated with distilled water at 100 bar of pore water pressure. The effluent of the cell was connected to the large tank filled with 3 L of water and 2 L of $scCO_2$ at 100 bar, simulating the subsurface injection condition. The $scCO_2$ injection pressure, which was higher than 100 bar, was controlled at the influent port of the cell until the $scCO_2$ begin to penetrate into the rock and the initial injection pressure (> 100 bar) of $scCO_2$ into the rock was measured for each rock. The mineralogical compositions of mudstones after 90 days reaction were similar to those before the reaction, suggesting that the mudstone in the Janggi basin has remained relatively stable for the $scCO_2$ involved geochemical reaction. The initial $scCO_2$ injection pressure (${\Delta}P$) of a tuff in the Janggi basin was 15 bar and the continuous $scCO_2$ injection into the tuff core occurred at higher than 20 bar of injection pressure. For the mudstone in the Janggi basin, the initial $scCO_2$ injection pressure was higher than 150 bar (10 times higher than that of the tuff). From the results, the mudstone in Janggi basin was more suitable than the tuff to shield the $scCO_2$ leakage from the reservoir rock at subsurface.