• Title/Summary/Keyword: 입구조건

Search Result 374, Processing Time 0.028 seconds

Prediction and Experiment of Pressure Drop of R22 and R134a on Design Conditions of Condenser (응축기의 설계조건에서 R22와 R134a의 압력강하 예측 및 실험)

  • Kang, Shin-Hyung;Byun, Ju-Suk;Kim, Chang-Duk
    • Journal of Energy Engineering
    • /
    • v.15 no.4 s.48
    • /
    • pp.243-249
    • /
    • 2006
  • An experimental study on the refrigerant-side pressure drop of slit fin an tube heat exchanger has been carried out. A comparison was made between the predictions of previously proposed empirical correlations and experimental data for the pressure drop on design conditions of condenser in micro-fin tube for R22 and Rl34a. Experiments were carried out under the conditions of inlet refrigerant temperature of $60^{\circ}C$ and mass fluxes varying from $150\;to\;250\;kg/m^{2}s$ for R22 and Rl34a. The inlet air conditions are dry bulb temperature of $35^{\circ}C$, relative humidity of 40% and air velocity varying from 0.68 to 1.43 m/s. Experiments show that pressure drop for R134a was $22{\sim}22.6%$ higher than R22 for the degree of subcooling $5^{\circ}C$ For the mass fluxes of $200{\sim}250\;kg/m^{2}s$, the deviation between the experimental and predicted values for the pressure drop was less than ${\pm}20%$ for R22 and Rl34a.

Analysis of Truck Platooning Operation Conditions Affecting Traffic Flow (교통류에 영향을 주는 화물차 군집주행 운영 조건 분석)

  • Jung, Harim;Lee, Young-taek;Park, Sangmin;Cho, Hyunbae;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.4
    • /
    • pp.106-117
    • /
    • 2021
  • In Korea, interest in truck platooning is increasing because most cargo transportation is done by road. Truck platooning is the operation of two or more trucks in a row to form one platoon, which can increase road capacity and improve fuel efficiency. In this study, to analyze the effect of truck platooning on traffic flow, scenarios were created according to traffic conditions and truck platooning operating conditions. In order to understand the effect of the truck platooning operating conditions, correlation analysis was conducted with the average travel speed, the number of lane change disturbance, and the number of disturbance in the entry/exit section. As a result, the number of trucks in the platoon, the spacing of trucks in the platoon, and the spacing between platoons were found to have an effect on the average speed and the number of lane change disturbance In addition, the truck platooning ratio was found to have a strong correlation with the average travel speed and the number of lane change disturbance regardless of the LOS.

The Comparison of the In-Situ Thermal Response Tests and CFD Analysis of Vertical-type Geothermal Heat Exchanger (수직형 지중 열교환기의 현장 열응답 시험과 CFD 해석 비교)

  • Sim, Yong-Sub;Lee, Hee-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3164-3169
    • /
    • 2013
  • In this study, a series of CFD analysis was performed in order to predict the leaving water temperature and the slope of in-situ thermal response tests of the vertical-type geothermal heat exchangers. The geothermal heat exchanger and surrounding ground formation were modeled using GAMBIT and simulation was used by utilizing FLUENT which is commercial CFD code. Comparing with the results of CFD and in-situ thermal response tests, the results of CFD was presented good agreement with $0.5^{\circ}C$ difference of Leaving Water Temperature and with 1.6% difference of the Slope.

Study of Optimal Machining Conditions of Ultrasonic Machining By Taguchi's Method (다구찌 방법을 이용한 초음파 가공의 최적가공조건에 관한 연구)

  • Liu, Jun Wei;Jin, Jian;Ko, Tae Jo;Baek, Dae Kyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.2
    • /
    • pp.213-218
    • /
    • 2013
  • Ultrasonic machining (USM) is a new method used in metal cutting. This process does not involve heating or any electrochemical effects, causes low surface damage, has small residual stress, and does not rely on the conductivity of the workpiece. These characteristics are suitable for the machining of brittle materials such as glass or ceramics. However, the use of USM for brittle materials generates cracks on the workpiece. Therefore, in this study, Taguchi's method was used to optimize the processing conditions of micro holes drilled in glass and ceramics. This method was used to successfully reduce the number of cracks at the entrance and the exit of the micro holes.

CFD Performance Analysis and Design of a 8kW Class Radial Inflow Turbine for Ocean Thermal Energy Conversion Using a Working Fluid of Ammonia (암모니아 작동유체를 이용한 해수온도차발전용 8kW급 구심터빈의 설계 및 CFD 성능해석)

  • Mo, Jang-Oh;Cha, Sang-Won;Kim, You-Taek;Lim, Tae-Woo;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.1030-1035
    • /
    • 2012
  • In this research, we analysed design and CFD analysis of an inflow radial turbine for OTEC with an output power of 8kW using an working fluid of ammonia. The inflow radial turbine consists of scroll casing, vain nozzle with 18 blade numbers and rotor blade with 13 blade numbers. Mass flow rate, and inlet temperature are 0.5kg/s and $25^{\circ}C$ respectively, and variable rotational speeds were applied between 12,000 and 36,000 with 3,000 rpm intervals. As the results according to the rotational speeds, the designed speed is 24,000 rpm where maximum efficiency exists. The maximum efficiency and output power are 88.66% and 8.52kW, respectively. Through this study, we expect that the analysed results will be used as the design material for the composition of the turbine optimal design parameters corresponding to the target output power under various working material conditions.

Comparison of Condenser Characteristics using R134a and R22 under the Same Inlet Temperature Condition (동일한 유입온도조건에서 R134a와 R22 적용 응축기의 특성비교)

  • Kang, Shin-Hyung;Byun, Ju-Suk;Kim, Chang-Duk
    • Journal of Energy Engineering
    • /
    • v.15 no.3 s.47
    • /
    • pp.166-173
    • /
    • 2006
  • R134a is considered as an alternative refrigerant to R22 for air conditioners. An experimental investigation was made to study the characteristics of the heat transfer and pressure drop for R134a flowing in a fin-and-tube heat exchanger used for commercial air-conditioning units. Experiments were carried out under the conditions of inlet refrigerant temperature of $60^{\circ}C$ and refrigerant mass fluxes of $150,\;200,\;and\;250\;kg/m^{2}s$. The inlet air has dry bulb temperature or $35^{\circ}C$, relative humidity of 40% and air velocity varying from 0.68 to 1.6 m/s. Experiments show that air velocity decreased by 5.9% is needed for R134a than that of R22 while pressure drop for R134a was $18.1{\sim}20.4%$ higher than that of R22 for the degree of subcooling $5^{\circ}C$. The results are useful in designing more compact and effective condensers for various refrigeration and air conditioning systems using refrigerant R134a.

Heat Transfer and Friction Characteristics of Louver Fin and Tube Heat Exchangers under Wet Conditions (루버핀-관 열교환기의 습조건에서의 열전달 및 마찰특성에 대한 실험 연구)

  • Kwon, Young Chul;Chang, Keun Sun
    • Applied Chemistry for Engineering
    • /
    • v.19 no.1
    • /
    • pp.73-79
    • /
    • 2008
  • An experimental study was conducted to investigate the effect of a tube row, a fin pitch and an inlet humidity on air-side heat and mass transfer performance of louvered fin-tube heat exchangers under wet conditions. Experimental conditions were varied by three fin pitches, two rows, two inlet relative humidities. Experimental results showed that the heat transfer performance decreased and the friction increased with the decrease of fin pitch, for 2 row heat exchanger. The effect of fin pitch on heat transfer performance was negligible with 3 row heat exchanger. The changes in relative humidity was not affected heat transfer and friction. However, the mass transfer performance was slightly decreased with the increase of relative humidity and with the decrease of fin pitch. The mass transfer performance of the louvered fin-tube heat exchanger decreased with the decrease of the fin pitch and was different according to the number of tube row.

Numerical Study on Cavitation Performance Evaluation in a Centrifugal Pump Impeller (원심펌프 임펠러의 캐비테이션 성능평가에 관한 수치적 연구)

  • Mo, Jang-Oh;Kim, You-Taek;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.286-293
    • /
    • 2012
  • In this investigation, flow analysis with single phase has been performed for a centrifugal impeller with a design efficiency of 90%, head of 20m and rotational speed of 3500 rpm at a design flow rate of 16m3. The impeller was designed based on an empirical formula suggested by A.J. Stepanoff. In a case of the single phase analysis, the hydraulic efficiency and head is 88.8% and 19.4m, respectively, which showed a good agreement with the values designed. The flow analysis with two phases was carried out under the various NPSH, at whose 8.79m the cavitation on the suction side of the blade was observed. The required NPSH of the designed impeller is approximately 6.5m and above this value, the designed centrifugal pump impeller needs to be operated under inlet pressure condition.

A Study on Performance Characteristics of an Evaporative Heat Exchanger with Mini-channels (환경조절장치용 미세유로형 증발열교환기의 성능특성 연구)

  • Lee, Hyung-Ju;Yoo, Young-June;Min, Seong-Ki;Hwang, Ki-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.247-253
    • /
    • 2011
  • An experimental study on performance characteristics of an evaporative heat exchanger based on tests for various operating conditions was presented. The heat exchanger maximizes the heat transfer rate per unit volume by applying mini-channels for both the air and coolant flow paths, and minimizes the amount of the coolant by using its latent heat of evaporation. The heat exchanger was manufactured by etching the flow paths, brazing the heat exchange plates, and welding the in/out ports of the media. The basic performance test has confirmed that the heat exchanger met its design requirements, and the results of the map test were analyzed to produce the performance characteristics quantitatively depending on the air inlet temperature, the air flow rate, and the coolant flow rate.

  • PDF

A Study on the Flow Characteristics of the Catalytic Combustor for the Gas Turbine (가스터빈용 촉매 연소기의 유동 특성에 관한 연구)

  • Hong, Dong-Jin;Kim, Chong-Min;Kim, Man-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.9
    • /
    • pp.792-798
    • /
    • 2007
  • catalytic combustion is accomplished by the chemical reaction between fuel and oxidizer at the catalyst surface, different from conventional combustion. Therefore, it is important that the fuel and air stream are well mixed and supplied uniformly prior to the combustion region. If the flow is maldistributed, a hot spot may occur that can lead to subsequent catalyst and substrate damage. Therefore, in order to enhance the mixing and flow uniformity, in this study, the perforated plate is used. A numerical simulation is performed to investigate the variation of flow characteristics by changing various parameters. Under each condition, the uniformity of the flow stream at the entrance of the catalyst section is evaluated and compared. The results show that the uniformity can be effectively improved for most of the case by using the well-designed perforated plates.