• Title/Summary/Keyword: 임펠러(impeller)

Search Result 389, Processing Time 0.026 seconds

Numerical Fluid Dynamic Study for Improvement of Mixing Efficiency in the Contactor (접촉 반응조 혼합효율 향상을 위한 전산 유체역학적 연구)

  • Shin, Mi-Soo;Kim, Hey-Suk;Joh, Jing-Young;Choi, Jun-Ho;Jang, Dong-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.8
    • /
    • pp.860-865
    • /
    • 2006
  • The characteristics of flow field and turbulent mixing efficiency of SS in non-aerated contacting reactor are critical design parameters directly affecting on the efficiency of the overall process of wastewater treatment system. To this end, in this study numerical fluid dynamic calculation has been made to investigate the flow field and concentration distribution of SS in terms of specification(shape and dimension) of impeller and other operating conditions. As the first step, the performance of the computer program developed was successfully evaluated by the comparison of the typical flow field with the type of impeller with that appeared in open literature. Further, a series of parametric investigations are made in terms of interesting parameters such as the type and dimension of impeller, location, and number of impeller, etc. A number of useful conclusions obtained by numerical calculation are the superiority of mixing efficiency of pitched type than the flat one together with the visible increase of the overall mixing effect by the employment of the larger impeller and increase of the impeller number, etc.

Application of Airfoil Impeller for Enhancement of Aerodynamic Performance of High Speed Centrifugal Fan (고속 원심홴의 공력성능 향상을 위한 에어포일 임펠러 적용)

  • Park, Kyung Hyun;Park, Chang Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.5
    • /
    • pp.321-327
    • /
    • 2016
  • This paper presents the application of airfoil impeller for enhancement of aerodynamic performance of a high speed centrifugal fan. Three airfoil impellers are proposed, considering the maximum thickness and the location of maximum thickness of the airfoil. C4 airfoil thickness distribution is applied to the three airfoil impellers. The impellers are evaluated using CFD (computational fluid dynamics) and suction power test. From the results, it is confirmed that flow separations on the pressure side of the impeller blades and the pressure side of diffuser blades are reduced when airfoil blade is applied to the impellers. It is also confirmed that with the centrifugal fan having airfoil impellers, there is an increase in fan efficiency by approximately 3% and reduction in specific sound level by approximately 1.3 dB(A).

Forced Vibration and Structural Response Prediction for Impeller in Resonant Conditions due to Diffuser Vanes (디퓨저 베인에 기인한 공진조건에서의 임펠러 강제진동 및 구조응답 예측)

  • Kim, Yongse;Kong, Dongjae;Shin, SangJoon;Park, Kihoon;Im, Kangsoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.24-35
    • /
    • 2018
  • Impeller blades in the centrifugal compressor are subjected to periodic aerodynamic excitations by interactions between the impeller and the diffuser vanes (DV) in resonant conditions. This may cause high cycle fatigue (HCF) and eventually result in failure of the blades. In order to predict the structural response accurately, the aerodynamic excitation and the major resonant conditions were predicted using unsteady computational fluid dynamics (CFD) and structural analysis. Then, a forced vibration analysis was performed by going through one-way fluid-structure interaction (FSI). A numerical analysis procedure was established to evaluate the structural safety with respect to HCF. The numerical analysis procedure proposed in this paper is expected to contribute toward preventing HCF problems in the initial design stage of an impeller.

Numerical Study on Cavitation Performance Evaluation in a Centrifugal Pump Impeller (원심펌프 임펠러의 캐비테이션 성능평가에 관한 수치적 연구)

  • Mo, Jang-Oh;Kim, You-Taek;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.286-293
    • /
    • 2012
  • In this investigation, flow analysis with single phase has been performed for a centrifugal impeller with a design efficiency of 90%, head of 20m and rotational speed of 3500 rpm at a design flow rate of 16m3. The impeller was designed based on an empirical formula suggested by A.J. Stepanoff. In a case of the single phase analysis, the hydraulic efficiency and head is 88.8% and 19.4m, respectively, which showed a good agreement with the values designed. The flow analysis with two phases was carried out under the various NPSH, at whose 8.79m the cavitation on the suction side of the blade was observed. The required NPSH of the designed impeller is approximately 6.5m and above this value, the designed centrifugal pump impeller needs to be operated under inlet pressure condition.

A Study of in-vitro Performances of the Intracardiac Axial Flow Pump (심장내 이식형 축류 혈액펌프의 in-vitro특성에 관한 연구)

  • 김동욱;삼전부호희
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.33-38
    • /
    • 1998
  • The intracardiac axial flow pump has been developed This device has several advantages: it fits well anatomically, its blood-contacting surface is small, and it is implanted as easily as an artificial heart valve replacement. The axial flow pump consists of an impeller and a motor, both of which are encased in a housing. Two types of impeller with 4 vanes and 6 vanes are used. Sealing of the motor shaft is achieved by means of a ferrofluidic seal. A flow of 5$\ell$/min was obtained at a differential pressure of 100mmHg with a motor speed of 7091rpm with the 4-vane impeller and 6402rpm with the 6-vane impeller. Sealing was kept against a pressure of 150mmHg at 7000rpm with the 4-vane impeller and 6402rpm with the 6-vane impeller. Sealing was kept against a pressure of 150mmHg at 7000rpm over 24 hours. The index of hemolysis was 0.056 with the 4-vane impeller and 0.214 with the 6-vane impeller. The intracardiac axial flow pump is a very promising circulatory support.

  • PDF

Study of Design Technology of a Turbo-impeller (터보 임펠러 설계기술에 관한 고찰)

  • Park, Young-Ha;Choi, Hyoung-Jun;Kim, Chae-Sil;Cho, Soo-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.2
    • /
    • pp.16-25
    • /
    • 2011
  • A Turbo-impeller is widely used in industries as well as in aero engines. Its design technology has been developed since the early 20th century. However, the final configuration of the impeller depends on the designers. In this study, a whole design process was introduced and an optimization method to design an impeller was studied in order to design a better impeller without influence by designers. In particular, as the Artificial Neural Network was applied to the optimization, the computational time for the optimization was equivalent to the time consumed by the gradient method and its result was guaranteed as the optimum in the whole design domain. Using this method, any impeller can be improved by selecting design variables after measuring profiles of the impeller.

Mixing of Highly Viscous Fluid by Using a Screw-Type Impeller (스크류형 임펠러에 의한 고점도 유체의 혼합)

  • Heo, Seong-Gyu;Suh, Yong-Kweon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.138-142
    • /
    • 2007
  • 본 연구는 고점도 유체의 혼합을 위한 교반기 설계의 기초연구로서 스크류 형상의 임펠러(또는 헬리컬 임펠러)를 가지는 교반기 내의 유동과 이에 따른 유체혼합 특성을 수치해석을 통해 가시화한 것이다. 이와 더불어 양호한 혼합효과를 가져다 줄 것으로 예상되는 엇갈림형 스크류 임펠러의 모델을 제안하였다. 수치해석상의 유체는 고점도의 Newton유체로 가정하였으며 임펠러의 회전속도는 6[rpm]으로 아주 작게 하여 저 레이놀즈수(약 Re=3)에서 혼합효과를 연구하였다. 또한 각종 설계 파라미터를 변화시켜 혼합 양상의 차이를 분석하여 설계에 반영하고자 하였다.

  • PDF

A Study on Magnesium Alloy Impeller Manufacturing Process using Finite Element Simulation (유한요소해석에 의한 마그네슘 합금의 임펠러 제조공정연구)

  • Kim, S.D.;Kang, S.H.;Kwon, Y.N.;Lee, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.139-142
    • /
    • 2007
  • This study focuses on the manufacturing process of a magnesium alloy impeller used for the fuel cell car using the hot forging technology. The impeller has the very complicated shape with sharply curved blade and thus generally produced by mechanical machining or casting process. However, since these technologies give the high manufacturing cost or poor mechanical properties, the forging technology is required to make the high-quality impeller with the lower manufacturing cost. In order for production of the impeller by forging technology, the parametric studies using finite element analyses were carried out to find the optimal perform shape of impeller made of magnesium alloy AZ 31 and finally die design was proposed based on the simulation results.

  • PDF

Reverse Engineering and 5-axis NC machining of impeller (임펠러의 역공학과 5축가공)

  • 신재광;홍성균;장동규;이희관;양균의
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1795-1798
    • /
    • 2003
  • This paper presents a method for impeller modeling by the reverse engineering and the 5-axis machining. The impeller is composed of pressure surface, suction surface and leading edge, and so on. The impeller is modeled by using the characteristic curves of impeller such as hub curves, shroud curves and leading edge. The characteristic curves are extracted from the scanned data. The hub curves and shroud curves are generated by intersection between blade surface and hub boundary and shroud boundary. respectively. A sample impeller machining is performed by tool path plan and post-processing with inverse kinematic solution.

  • PDF

The Development of Exclusive CAD/CAM System for Impeller Blades Formed by Ruled Surface I(A Study on the Modeling) (Ruled Surface로 형성된 임펠러 블레이드 전용 CAD/CAM 시스템 개발 I (모델링에 관한 연구))

  • ;;;;;;Yu-Ge Dong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.6
    • /
    • pp.71-77
    • /
    • 2001
  • We have developed the exclusive CAD/CAM system for the machining of impeller blades. This study is about the mod-eling method for the effective machining of impeller blades farmed by ruled surface. As the impeller is consisted of boss part and blade part, the boss is modeled by rotational surface of hub curve on z-axis and the blade is described by ruled- surfaces between hub curve and shroud curve. This modeling process can be carried out on the software developed in this study. And, the developed software can describe the impeller as a solid model through interface with Solid-Works soul- ware. The developed software containing the interface method proposed in this study was very effective fur impeller modeling.

  • PDF