• Title/Summary/Keyword: 임펄스응답법

Search Result 35, Processing Time 0.02 seconds

Discrete-time approximation and modeling of a broadband underwater propagation channel based on eigenray analysis (고유 음선 분석에 기반한 광대역 수중음향 전달 채널의 이산시간 근사 및 모의 방법 연구)

  • Shin, Donghoon;Cho, Hyeon-Deok;Kwon, Taekik;Ahn, Jae-Kyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.3
    • /
    • pp.216-225
    • /
    • 2020
  • In this paper, broadband underwater propagation channel modeling based on eigenray analysis is discussed. Underwater channels are often formulated in frequency domain time-harmonic signals, which are impractical for simulating broadband signals in time domain. In this regard, time domain modeling of the underwater propagation channel is required for the simulation of broadband signals, for which the eigenray analysis based on ray tracing, resulting in multipath propagation delays in time-domain, is used in this paper. For discrete time system application, the phase, frequency-dependent loss and non-integer sample delays for each eigenray, are approximated by the finite impulse response of the broadband propagation channel.

Acoustic Transfer Characteristics of Ship′s Bridge for Whistle Sound (기적음에 대한 선박 선교의 음향전달특성)

  • Yim, Jeong-Bin;Kim, Chang-Kyoung
    • Journal of Navigation and Port Research
    • /
    • v.28 no.6
    • /
    • pp.491-496
    • /
    • 2004
  • The paper describes measurement techniques for an acoustic transfer characteristic of ship's bridge stimulated by a whistle sound The response sounds, according to the opening-shutting conditions of bridge doors for Training Ship ‘SAENURI’, are measured by B&K 2260D equipment, and then the frequency responses are extracted by B&K 7830 software. To evaluate the measured transfer characteristic, the 128th order FIR (Finite Impulse Response) filters, containing the different frequency characteristics, are constructed based on the frequency sampling-based design method Using evaluation indexes with six scales, psychological assessments by five subjects are carried out with test sounds which are obtained from convolving the source signal with FIR filters. As results of tests, the test sounds gives $A_S$ 3.3∼4.7 which means the psychological sense of ‘it is almost similar sound as original ones in a real world’, and thus it is clearly seen that the proposed method can be used for the measurement of an acoustic transfer characteristic of ship’s bridge.

Acoustic Transfer Characteristic of Ship's Bridge for Whistle Sound (기적음에 대한 선박 선교의 음향전달특성)

  • 임정빈;김창경
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.55-60
    • /
    • 2004
  • The paper describes measurement techniques for an acoustic transfer characteristic of ship's bridge stimulated by a whistle sound. The response sounds, according to the opening-shutting conditions of bridge doors for T/S ‘SAENURI’, are measured by B&K 2260D equipment, and then extracted the frequency responses by B&K 7830 software. To evaluate the measured transfer characteristic, the 128th order FIR (Finite Impulse Response) filters, containing the frequency characteristic, are constructed based on the frequency sampling-based design method. Using evaluation indexes with six scales, psychological assessments by five subjects are carried out with test sounds which are convolved source sound and FIR filters. As results of tests, the test sounds gives A/sub s/=3.3∼4.7 which means the psychological sense of 'it is almost similar sound as original ones in a real world', and thus it is cleary seen tint the proposed method can be suit for the measurement of an acoustic transfer characteristic of ship's bridg.

  • PDF

ESD(Exponential Standard Deviation) Band centered at Exponential Moving Average (지수이동평균을 중심으로 하는 ESD밴드)

  • Lee, Jungyoun;Hwang, Sunmyung
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.2
    • /
    • pp.115-125
    • /
    • 2016
  • The Bollinger Band indicating the current price position in the recent price action range is obtained by adding/substracting the simple standard deviation (SSD) to/from the simple moving average (SMA). In this paper, we first compare the characteristics of the SMA and the exponential moving average (EMA) in the operator's point of view. A basic equation is obtained between the interval length N of the SMA operator and the weighting factor ${\rho}$ of the EMA operator, that makes the centers of the 1st order momentums of each operator impulse respoinse identical. For equivalent N and ${\rho}$, frequency response examples are obtained and compared by using the discrete time Fourier transform. Based on observation that the SMA operator reacts more excessively than the EMA operator, we propose a novel exponential standard deviation (ESD) band centered at the EMA and derive an auto recursive formula for the proposed ESD band. Practical examples for the ESD band show that it has a smoother bound on the price action range than the Bollinger Band. Comparisons are also made for the gap corrected chart to show the advantageous feature of the ESD band even in the case of gap occurrence. Trading techniques developed for the Bollinger Band can be straight forwardly applied to those for the ESD band.

Design of e-Learning System for Spectral Analysis of High-Order Pulse (고차원펄스 스펙트럼 분석을 위한 이러닝 시스템의 설계)

  • Oh, Yong-Sun
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.8
    • /
    • pp.475-487
    • /
    • 2011
  • In this paper, we present a systematic method to derive spectrum of high-order pulse and a novel design of e-Learning system that deals with deriving the spectrum using concept-based branching method. Spectrum of high-order pulse can be derived using conventional methods including 'Consecutive Differentiations' or 'Convolutions', however, their complexity of calculation should be too high to be used as the order of the pulse increase. We develop a recursive algorithm according to the order of pulse, and then derive the formula of spectrum connected to the order with a newly designed look-up table. Moving along, we design an e-Learning content for studying the procedure of deriving high-order pulse spectrum described above. In this authoring, we use the concept-based object branching method including conventional page or title-type branching in sequential playing. We design all four Content-pages divided into 'Modeling', 'Impulse Response and Transfer Function', 'Parameters' and 'Look-up Table' by these conceptual objects. And modules and sub-modules are constructed hierarchically as conceptual elements from the Content-pages. Students can easily approach to the core concepts of the analysis because of the effects of our new teaching method. We offer step-by-step processes of the e-Learning content through unit-based branching scheme for difficult modules and sub-modules in our system. In addition we can offer repetitive learning processes for necessary block of given learning objects. Moreover, this method of constructing content will be considered as an advanced effectiveness of content itself.