• 제목/요약/키워드: 임팩트 센서

검색결과 4건 처리시간 0.018초

그래핀 기반 지능형 나노복합소재를 이용한 고감도 임팩트 페인트 센서 개발 연구 (Development of Novel Impact Paint Sensor by Using Graphene based Smart Nano Composite)

  • 김성용;박세훈;최경락;박형기;강인필
    • 한국소음진동공학회논문집
    • /
    • 제24권3호
    • /
    • pp.247-252
    • /
    • 2014
  • This paper presents a novel impact sensor which can be fabricated with smart paint made of grapheme. This smart nano paint can be easily installed on structures using a spray-on technique and that can make the sensor low cost and practical. The graphene effectively improves the piezoresistivity of the smart paint and that is available to achieve sensitive impact sensor with high gauge factor. The nano smart-paint can detect sufficient impact to cover the damaged energy range of the composite around 1~3J. The voltage outputs from the sprayed paints show fairly linear responses after signal processing. The impact makes deformation of the structure and it brings change of piezoresistivity of the paint and those converts into voltage output consequently by means of a simple signal processing system. The nano smart paint is lightweight and easily applied to the structural surface, and there is no stress concentration. The nano smart paint is expected to be a cost effective and sensitive multi-functional sensor for composites and other damage monitoring applications in the field of structural health monitoring.

산업용 빅데이터 활용으로 인한 글로벌 시장 선도에 대한 연구 (A Study on the Global Market Leader in Industry due to the Utilization Big Data)

  • 오현경
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2015년도 추계학술발표대회
    • /
    • pp.273-276
    • /
    • 2015
  • 센서를 통한 제조업 생산 공정 데이터양의 폭발적 증가와 제조업의 서비스화 추세, 제조업의 미래산업과 빅데이터의 융합 추세를 고려해 보았을 때 앞으로 제조업에서 빅데이터의 영향은 점점 커질 것으로 예상된다. 따라서 한국의 제조업도 세계의 제조업 첨단화에 발맞추기 위해서 빅데이터의 활용을 장려하고 지원할 필요가 있다. 제조업의 실질적 효율성을 제공하는 효과의 임팩트가 가장 큰 기술 분야에서는 빅데이터 분석이 먼 미래에 도입을 고려할 분야가 아닌 현재의 최대 이슈이다. 제조업에서의 빠른 대응, 민첩성, 신뢰도 향상에서 기업들은 비용을 절감하고 자산의 효율적인 활용 측면에서도 단순한 제조공정에서 벗어나 많은 제조 기업들이 공장을 디지털화하고 스마트한 제조 공정 시스템 확보에 빅데이터를 구현, 활용해야 하는 단계이다. 빅데이터 활용은 현 시점에서 산업에 주는 영향으로 가장 파괴적인 기술이 될 것으로 예상된다.

서포트벡터머신 기반 PVDF 센서의 결함 예측 기법 (Fault Detection Technique for PVDF Sensor Based on Support Vector Machine)

  • 김승욱;이상민
    • 한국전자통신학회논문지
    • /
    • 제18권5호
    • /
    • pp.785-796
    • /
    • 2023
  • 본 연구에서는 구조물 건전성 모니터링에 널리 활용되고 있는 PVDF(: Polyvinylidene fluoride) 센서에 나타날 수 있는 결함을 실시간으로 분류 및 예측하기 위한 방법론을 제안하였다. 센서 부착 환경에 따라 나타나는 센서의 결함 유형을 분류하였고, 임팩트 해머를 이용한 충격 시험을 수행하여 결함 유형에 따른 출력 신호를 획득하였다. 결함 유형에 따른 출력 신호간의 차이를 식별하기 위해 이들의 시간영역 통계 특징을 추출하여 데이터 집합을 구축하였다. 머신러닝 기반 분류 알고리즘들 중 센서 결함 유형 감지에 가장 적합한 알고리즘 선정을 위해 구축한 데이터 집합의 학습 및 이에 따른 결과를 분석하였고, 이들 중 SVM(: Support vector machine)이 가장 높은 성능을 보임을 확인하였다. 선정된 SVM 알고리즘의 추가적인 정확도 향상을 위해 하이퍼 파라미터 최적화 작업을 수행하였으며, 결과적으로 92.5%의 정확도로 센서 결함 유형을 분류하였고 이는 타 분류 알고리즘에 비하여 최대 13.95% 높은 정확도를 보였다. 본 연구에서 제안한 센서 결함 예측 기법은 PVDF 센서뿐만 아니라 실시간 구조물 건전성 모니터링을 위한 다양한 센서의 신뢰성을 확보하기 위한 기반 기술로 활용될 수 있을 것으로 사료된다.