• Title/Summary/Keyword: 임베디드 네트워크 시스템

Search Result 369, Processing Time 0.021 seconds

Semantic Depth Data Transmission Reduction Techniques using Frame-to-Frame Masking Method for Light-weighted LiDAR Signal Processing Platform (LiDAR 신호처리 플랫폼을 위한 프레임 간 마스킹 기법 기반 유효 데이터 전송량 경량화 기법)

  • Chong, Taewon;Park, Daejin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1859-1867
    • /
    • 2021
  • Multi LiDAR sensors are being mounted on autonomous vehicles, and a system to multi LiDAR sensors data is required. When sensors data is transmitted or processed to the main processor, a huge amount of data causes a load on the transport network or data processing. In order to minimize the number of load overhead into LiDAR sensor processors, only semantic data is transmitted through data comparison between frames in LiDAR data. When data from 4 LiDAR sensors are processed in a static environment without moving objects and a dynamic environment in which a person moves within sensor's field of view, in a static experiment environment, the transmitted data reduced by 89.5% from 232,104 to 26,110 bytes. In dynamic environment, it was possible to reduce the transmitted data by 88.1% to 29,179 bytes.

Applying a Two-channel Video Streaming Technology Front and Rear Vehicle Wireless Video Monitoring System (2채널 영상 스트리밍 기술을 적용한 차량용 전. 후방 무선 영상 모니터링 시스템)

  • Na, HeeSu;Won, YoungJin;Yoon, JungGeun;Lee, SangMin;Ahn, MyeongIl;Kim, DongHyun;Moon, JongHoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.12
    • /
    • pp.210-216
    • /
    • 2014
  • In this paper, it was proposed to develop front and rear image monitoring system for vehicle that help a driver to cope with urgent situation about a dangerous element. When parking a vehicle, the risk factors to be formed by the dead zone can be resolved by using anterior and posterior cameras of the vehicle. In embedded system environment, a SoC(System on Chip) and two high-resolution CMOS (Complementary metal-oxide-semiconductor) image sensors were used to transfer two high-resolution image data through he TCP/ IP-based network. To transfer image data through he TCP/ IP-based network, the images received by two cameras were compressed by using H.264 and they were transmitted with wireless method(Wi-Fi) by using real-time transport protocol (Real-time Transport Protocol). Transmission loss, transmission delay and transmission limit were solved in wireless (Wi-Fi) environment and the bit-rate of two image data compressed by H.264 was adjusted. And the system for the optimal transmission in wireless (Wi-Fi) environment was materialized and experimented.

Smart Fog : Advanced Fog Server-centric Things Abstraction Framework for Multi-service IoT System (Smart Fog : 다중 서비스 사물 인터넷 시스템을 위한 포그 서버 중심 사물 추상화 프레임워크)

  • Hong, Gyeonghwan;Park, Eunsoo;Choi, Sihoon;Shin, Dongkun
    • Journal of KIISE
    • /
    • v.43 no.6
    • /
    • pp.710-717
    • /
    • 2016
  • Recently, several research studies on things abstraction framework have been proposed in order to implement the multi-service Internet of Things (IoT) system, where various IoT services share the thing devices. Distributed things abstraction has an IoT service duplication problem, which aggravates power consumption of mobile devices and network traffic. On the other hand, cloud server-centric things abstraction cannot cover real-time interactions due to long network delay. Fog server-centric things abstraction has limits in insufficient IoT interfaces. In this paper, we propose Smart Fog which is a fog server-centric things abstraction framework to resolve the problems of the existing things abstraction frameworks. Smart Fog consists of software modules to operate the Smart Gateway and three interfaces. Smart Fog is implemented based on IoTivity framework and OIC standard. We construct a smart home prototype on an embedded board Odroid-XU3 using Smart Fog. We evaluate the network performance and energy efficiency of Smart Fog. The experimental results indicate that the Smart Fog shows short network latency, which can perform real-time interaction. The results also show that the proposed framework has reduction in the network traffic of 74% and power consumption of 21% in mobile device, compared to distributed things abstraction.

Implementation of Mobile P2P System Based on JXTA (JXTA 기반의 모바일 P2P 시스템 구축)

  • Kim Hyeong-Gyun;Choi Kwang-Mi
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.7
    • /
    • pp.1407-1411
    • /
    • 2005
  • Tn these server oriented network forms, users allowed to approach the a certain server only in slave and passive way, and are limited in sharing informations, and internet choose from a method of traditional centralized web server until now, so we pay a lot of money and have a problem of maintenance management. The P2P is the new solution of these limitations, but there is no verification about the possibility and validity of p2p as the business model. This parer offering to some solution for those problems using the JXTA technique and P2P compution. We will apply the JXTA platform that wireless environment as mobile environment. The JXTA technique can be interoperability between third-party. This paper is implementation of P2P communication system on mobile environment. It's implementation used by JXTA technique, J2ME and XML.

Analysis of Network Log based on Hadoop (하둡 기반 네트워크 로그 시스템)

  • Kim, Jeong-Joon;Park, Jeong-Min;Chung, Sung-Taek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.5
    • /
    • pp.125-130
    • /
    • 2017
  • Since field control equipment such as PLC has no function to log key event information in the log, it is difficult to analyze the accident. Therefore, it is necessary to secure information that can analyze when a cyber accident occurs by logging the main event information of the field control equipment such as PLC and IED. The protocol analyzer is required to analyze the field control device (the embedded device) communication protocol for event logging. However, the conventional analyzer, such as Wireshark is difficult to process the data identification and extraction of the large variety of protocols for event logging is difficult analysis of the payload data based and classification. In this paper, we developed a system for Big Data based on field control device communication protocol payload data extraction for event logging of large studies.

Secure and Energy-Efficient MPEG Encoding using Multicore Platforms (멀티코어를 이용한 안전하고 에너지 효율적인 MPEG 인코딩)

  • Lee, Sung-Ju;Lee, Eun-Ji;Hong, Seung-Woo;Choi, Han-Na;Chung, Yong-Wha
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.20 no.3
    • /
    • pp.113-120
    • /
    • 2010
  • Content security and privacy protection are important issues in emerging network-based video surveillance applications. Especially, satisfying both real-time constraint and energy efficiency with embedded system-based video sensors is challenging since the battery-operated sensors need to compress and protect video content in real-time. In this paper, we propose a multicore-based solution to compress and protect video surveillance data, and evaluate the effectiveness of the solution in terms of both real-time constraint and energy efficiency. Based on the experimental results with MPEG2/AES software, we confirm that the multicore-based solution can improve the energy efficiency of a singlecore-based solution by a factor of 30 under the real-time constraint.

Car Exhaust Gas Detection and Self-Diagnosis System using ZigBee and CAN Communications (ZigBee와 CAN 통신을 이용한 자동차 배기가스 검출 및 자기진단 시스템)

  • Chun, Jong-Hun;Kim, Kuk-Se;Park, Jong-An
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.6
    • /
    • pp.48-56
    • /
    • 2008
  • This study provides to car driver with car exhaust gas and sensor information which are car trouble code in engine and many sensors when the car has some problems. This is to provide car manager with many information of car sensors when we go to vehicle maintenance. For example, information of engine RPM, fuel system, intake air temperature, air flow sensors and oxygen sensors can provide to owner or garage, and also add to multimedia system for mp3 files and video files. This system consists of embedded linux system of low power while driving the car which uses OBD-II protocols and zigbee communication interface from CAN communication of car system to self-diagnosis embedded system of car. Finally, low power embedded system has a lot of application and OBD-II protocols for embedded linux system and CAN communication which get sensor informations of car control sensor system while driving the car.

  • PDF

Timely Sensor Fault Detection Scheme based on Deep Learning (딥 러닝 기반 실시간 센서 고장 검출 기법)

  • Yang, Jae-Wan;Lee, Young-Doo;Koo, In-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.1
    • /
    • pp.163-169
    • /
    • 2020
  • Recently, research on automation and unmanned operation of machines in the industrial field has been conducted with the advent of AI, Big data, and the IoT, which are the core technologies of the Fourth Industrial Revolution. The machines for these automation processes are controlled based on the data collected from the sensors attached to them, and further, the processes are managed. Conventionally, the abnormalities of sensors are periodically checked and managed. However, due to various environmental factors and situations in the industrial field, there are cases where the inspection due to the failure is not missed or failures are not detected to prevent damage due to sensor failure. In addition, even if a failure occurs, it is not immediately detected, which worsens the process loss. Therefore, in order to prevent damage caused by such a sudden sensor failure, it is necessary to identify the failure of the sensor in an embedded system in real-time and to diagnose the failure and determine the type for a quick response. In this paper, a deep neural network-based fault diagnosis system is designed and implemented using Raspberry Pi to classify typical sensor fault types such as erratic fault, hard-over fault, spike fault, and stuck fault. In order to diagnose sensor failure, the network is constructed using Google's proposed Inverted residual block structure of MobilieNetV2. The proposed scheme reduces memory usage and improves the performance of the conventional CNN technique to classify sensor faults.

Analyzing System of Fuel Filter Based on Temperature and Pressure Measurement for Diesel Cars (온도 및 압력 측정에 기반을 둔 디젤 차량의 연료필터 분석 시스템)

  • Jang, Young-Sung;Lee, Bo-Hee;Yoon, Dal-Hwan;Kim, Jin-Geol;Son, Byeong-Min
    • Journal of IKEEE
    • /
    • v.18 no.3
    • /
    • pp.383-391
    • /
    • 2014
  • In this paper, temperature, pressure and flow analysis system for testing a fuel filter of a diesel engine at the low-temperature environment in winter, is proposed. The light oil of diesel engine below a specific temperature is changed to the waxing materials like paraffin, and it prevents engine to start easily because of reducing fluidity. Thus, built-in block heater should be installed with fuel filter in order to solve this problem. And it is necessary to design evaluation system that can analyze the performance according to temperature, pressure and flow characteristics near fuel filter at a very low temperature. In this paper, we measured a physical quantity related to the performance of around the fuel filter using the proposed system, and analyzed their characteristics. Also the measured data is transferred to remote user by using a web server of embedded systems, and analyzed their conditions in remote place via web browser in order to know the operating status of fuel filter. We installed the proposed system in a small test chamber to verify the performance and took an experiment in normal temperature and very low temperature, and could obtain temperature, pressure and flow of near the fuel filter. As a result, the fuel flow could be improved during operation of the fuel heater.

Embedded Multi-LED Display System based on Wireless Internet using Otsu Algorithm (오츠 알고리즘을 활용한 무선인터넷 기반 임베디드 다중 LED 전광판 시스템)

  • Jang, Ho-Min;Kim, Eui-Ryong;Oh, Se-Chun;Kim, Sin-Ryeong;Kim, Young-Gon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.6
    • /
    • pp.329-336
    • /
    • 2016
  • In the outdoor advertising and industrial sites, are trying to implement the LED electric bulletin board system that is based on image processing in order to express a variety of intention in real time. Recently, in various field, rather than simple text representation, the importance of intuitive communication using images is increasing. Thus, instead of outputting the simple input information for communication, a system that can output a real-time information being sought. Therefore, the system is directed to overcoming by converting the problem of mapping an image on a variety of conventional LED display that can not be output images, the possible image output formats. Using an LED of low power, it has developed to output the efficient messages and images within a limited resources. This paper provides a system capable of managing the LED display on the wireless network. Atmega2560, Wi-Fi module, using the server and Android applications client, rather than printing a text only, it is a system to reduce the load generated image output character output in to the conversion process as can be managed by the server.