• Title/Summary/Keyword: 일 최저기온

Search Result 230, Processing Time 0.031 seconds

Estimation of Temporal Surface Air Temperature under Nocturnal Inversion Conditions (야간 역전조건 하의 지표기온 경시변화 추정)

  • Kim, Soo-ock
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.3
    • /
    • pp.75-85
    • /
    • 2017
  • A method to estimate hourly temperature profiles on calm and clear nights was developed based on temporal changes of inversion height and strength. A meteorological temperature profiler (Model MTP5H, Kipp and Zonen) was installed on the rooftop of the Highland Agriculture Research Institute, located in Daegwallyeong-myeon, Pyeongchang-gun, Gangwon-do. The hourly vertical distribution of air temperature was measured up to 600 m at intervals of 50 m from May 2007 to March 2008. Temperature and relative humidity data loggers (HOBO U23 Pro v2, Onset Computer Corporation, USA) were installed in the Jungdae-ri Valley, located between Gurye-gun, Jeollanam-do and Gwangyang-si, Jeollanam-do. These loggers were used to archive measurements of weather data 1.5 m above the surface from October 3, 2014, to November 23, 2015. The inversion strength was determined using the difference between the temperature at the inversion height, which is the highest temperature in the profile, and the temperature at 100 m from the surface. Empirical equations for the changes of inversion height and strength were derived to express the development of temperature inversion on calm and clear nights. To estimate air temperature near the ground on a slope exposed to crops, the equation's parameters were modified using temperature distribution of the mountain slope obtained from the data loggers. Estimated hourly temperatures using the method were compared with observed temperatures at 19 weather sites located within three watersheds in the southern Jiri-mountain in 2015. The mean error (ME) and root mean square error (RMSE) of the hourly temperatures were $-0.69^{\circ}C$ and $1.61^{\circ}C$, respectively. Hourly temperatures were often underestimated from 2000 to 0100 LST the next day. When temperatures were estimated at 0600 LST using the existing model, ME and RMSE were $-0.86^{\circ}C$ and $1.72^{\circ}C$, respectively. The method proposed in this study resulted in a smaller error, e.g., ME of $-0.12^{\circ}C$ and RMSE of $1.34^{\circ}C$. The method could be improved further taking into account various weather conditions, which could reduce the estimation error.

Forecasting Late Blight of Potatoes at the Alpine Area in Korea (한국의 고랭지대에 있어서의 감자역병 발생예찰에 관하여)

  • Hahm Y. I.;Hahm B. H.;Franckowiak J. D.
    • Korean journal of applied entomology
    • /
    • v.17 no.2 s.35
    • /
    • pp.81-87
    • /
    • 1978
  • Late blight incited by Phytophthora infestans (Mont.) de Bary, is an important problem for seed potato prodcution in Korea. At the alpine Daekwanryeong area, unprotected potatoes are often defoliated within 14 days after late blight is first observed in the field. Since regular spraying can control late blight, the forecasting service is needed for timely initiation of the spraying program. Climatological data and notes on late blight incidence were recorded during 1970-1977 at the Alpine Experiment Station. The moving graph method using 7-day average mean temperature and 7-day total rainfall did not give highly accurate forecasts. Adding data on relative humidity and 7-day average minimum temperature increased the usefulness of the moving graph. Yields of late blight susceptible varietieties in sprayed plots were related to late blight occurrence and to the rainfall distribution pattern.

  • PDF

A Statistical model to Predict soil Temperature by Combining the Yearly Oscillation Fourier Expansion and Meteorological Factors (연주기(年週期) Fourier 함수(函數)와 기상요소(氣象要素)에 의(依)한 지온예측(地溫豫測) 통계(統計) 모형(模型))

  • Jung, Yeong-Sang;Lee, Byun-Woo;Kim, Byung-Chang;Lee, Yang-Soo;Um, Ki-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.23 no.2
    • /
    • pp.87-93
    • /
    • 1990
  • A statistical model to predict soil temperature from the ambient meteorological factors including mean, maximum and minimum air temperatures, precipitation, wind speed and snow depth combined with Fourier time series expansion was developed with the data measured at the Suwon Meteorolical Service from 1979 to 1988. The stepwise elimination technique was used for statistical analysis. For the yearly oscillation model for soil temperature with 8 terms of Fourier expansion, the mean square error was decreased with soil depth showing 2.30 for the surface temperature, and 1.34-0.42 for 5 to 500-cm soil temperatures. The $r^2$ ranged from 0.913 to 0.988. The number of lag days of air temperature by remainder analysis was 0 day for the soil surface temperature, -1 day for 5 to 30-cm soil temperature, and -2 days for 50-cm soil temperature. The number of lag days for precipitaion, snow depth and wind speed was -1 day for the 0 to 10-cm soil temperatures, and -2 to -3 days for the 30 to 50-cm soil teperatures. For the statistical soil temperature prediction model combined with the yearly oscillation terms and meteorological factors as remainder terms considering the lag days obtained above, the mean square error was 1.64 for the soil surfac temperature, and ranged 1.34-0.42 for 5 to 500cm soil temperatures. The model test with 1978 data independent to model development resulted in good agreement with $r^2$ ranged 0.976 to 0.996. The magnitudes of coeffcicients implied that the soil depth where daily meteorological variables night affect soil temperature was 30 to 50 cm. In the models, solar radiation was not included as a independent variable ; however, in a seperated analysis on relationship between the difference(${\Delta}Tmxs$) of the maximum soil temperature and the maximum air temperature and solar radiation(Rs ; $J\;m^{-2}$) under a corn canopy showed linear relationship as $${\Delta}Tmxs=0.902+1.924{\times}10^{-3}$$ Rs for leaf area index lower than 2 $${\Delta}Tmxs=0.274+8.881{\times}10^{-4}$$ Rs for leaf area index higher than 2.

  • PDF

Microclimate in Rice Nursery Bed Covered with Various Materials (벼 보온못자리 피복재질에 따른 상내 미기상 특성)

  • Hwang Kyu Hong;Lee Jeong Taek;Yun Jin Il;Shim Kyo Moon;Hur Seung Oh
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.2 no.3
    • /
    • pp.87-94
    • /
    • 2000
  • To recommend adequate covering materials and shapes of rice nursery bed for mechanical transplanting rice seedling, measuring of microclimate inside the rice nursery protected by polyethylene tunnel type, polyester tunnel type, and polyester flat type was compared to that outside the nursery. The vapor pressure deficit inside the polyester tunnel and polyethylene tunnel was higher than that outside the tunnel during daytime on a sunny day. During daytime on cloudy with rain day, the vapor pressure deficit inside polyester tunnel was higher than that in polyethylene tunnel or outside the nursery tunnel. The heat fluxes in the rice nursery tunnel during daytime flowed more to the soil than to the outside tunnel. Amounts of soil heat fluxes in polyethylene tunnel were higher than in polyester flat and polyester tunnel. The vertical profile of air temperature inside the nursery tunnel came to inversion during daytime and was lapse during nighttime regardless weather condition. The maximum temperature inside the nursery tunnel were 47.2$^{\circ}C$ in polyethylene tunnel and 37.$0^{\circ}C$ in polyester tunnel which was 21.1$^{\circ}C$ and 10.9$^{\circ}C$ higher than outside the tunnels respectively on sunny day. On cloudy with rain day, the temperature inside nursery tunnel was higher 8.4$^{\circ}C$ and 4.$0^{\circ}C$ polyethylene and polyester tunnel respectively then outside. Daily temperature changes became larger in the polyethylene tunnel, polyester tunnel, and outside the nursery tunnel in order. The rice seedling growth in polyester tunnel was better than the other nursery beds.

  • PDF

The Relationship between Thermal Preference and Hibernation Strategies in Endangered Plecotus ognevi (멸종위기 야생생물 II급 토끼박쥐 Plecotus ognevi의 온도선호도와 동면 전략)

  • Kim, Sun-Sook;Choi, Yu-Seong;Kim, Lyoun
    • Korean Journal of Ecology and Environment
    • /
    • v.51 no.4
    • /
    • pp.345-353
    • /
    • 2018
  • Hibernation is regarded as a physiological and behavioral adaptation that permits the survival of animals such as bats during seasonal periods of energy shortage. This study investigated the hibernation period of Plecotus ognevi in the temperate climate zone and the relationship between the thermal preference and hibernating process of bats. We hypothesized that the hibernation period of bats is closely related to the external temperature and temperature preference of bat species in the temperate region. To verify this hypothesis, we surveyed the distribution of the P. ognevi population in South Korea, and the temperature preference and the characteristics of hibernacula of P. ognevi. We predict that hibernation in the bat will begin when the external temperature drops below the thermal preference of the species and will leave from hibernation when the external temperature is higher than the thermal preference. P. ognevi hibernated in roosts maintained in low temperature ambient conditions with $-3.5{\sim}7.5^{\circ}C$). The body temperatures (averaged $3.01{\pm}1.30^{\circ}C$, ranged $0.1{\sim}7.8^{\circ}C$) of hibernating bats were closely related to the rock surface temperatures rather than the ambient temperatures. The bats began to hibernate in late November and final arousals occurred in mid-March, so that the total length of the hibernation was 115~120 days. The period of hibernation was strongly influenced by fluctuations in the external mean temperature. This study suggests that the onset and termination of P. ognevi hibernation is due to the interaction between the temperature of the hibernacula and that of the external environment and is based on the thermal preference of the bats. The study also suggests that the hibernation strategy such as thermal preference and hibernation periods of this species affect to distribution as bat species adapting to a severely climate.

Fruit Quality and Storability by Harvest Time at 'Fuji'/M.9 Apple Orchard Located in the Area with a High Air Temperature during the Fall Season (가을철 기온이 높은 지역에 위치한 '후지'/M.9 사과원의 수확시기에 따른 과실품질과 저장성)

  • Sagong, Dong-Hoon;Kweon, Hun-Joong;Song, Yang-Yik;Park, Moo-Yong;Kang, Seok-Beom;Yoon, Tae-Myung
    • Horticultural Science & Technology
    • /
    • v.31 no.4
    • /
    • pp.437-446
    • /
    • 2013
  • This study was conducted for three years (2007, 2009, and 2010) to investigate the changes in fruit quality during maturation, and the quality and storage ability of fruits harvested at different times of 'Fuji' apple in Daegu region with a high air temperature during the fall season. Changes in apple fruit quality during the maturation period were investigated from 120-135 days to 183-198 days after full bloom. In comparing quality and storage ability of fruits harvested at different times, fruits harvested more than 180 days after full bloom were used. During the maturation period, poor coloring was the problem for 'Fuji' apple in Daegu region by the high air temperature about $20^{\circ}C$. In comparing quality of fruits harvested at different times, the soluble solid contents and hunter a value were increased by the extended harvest time. Fruit weight during harvest was not affected by different harvest time, while the fruit firmness and titratable acidity during harvest were decreased critically when the freezing damage happened. Ethylene production, fruit firmness, and titratable acidity during cold storage for twenty weeks did not differ according to the different harvest time. Soluble solid contents of fruits harvested at 216 days after full bloom in 2009 were similar at the time of harvest and cold storage. For fruits harvested at 201 days after full bloom, soluble solid content during cold storage was higher than during harvest time. However fruit firmness, soluble solid content, and titratable acidity after cold storage of fruit harvested after freezing damage was lower than those of the fruit harvested before freezing damage. The results show that the extended harvest time of 'Fuji' apples about 2-4 weeks from 180-200 days after full bloom in area with above-air temperature during fall season was seemed to be beneficial to enhancing soluble solid contents and fruit red color, but harvesting after the middle of November was dangerous because minimum air temperature began to fall under $-3.0^{\circ}C$.

The Effects of Increased Temperature on Yield Properties, Antioxidant Contents, and Pollen Viability of Adzuki Bean (Vigna angularis L.) Responses in Temperature Gradient Greenhouse and Growth Periods (온도구배온실에서 온도상승이 생육시기별 팥의 수량, 항산화 성분, 화분 임성에 미치는 영향)

  • Eun Ji Suh;Ok Jae Won;Jae-Sung Park;Won Young Han;Jin Hee Seo;Sun Tae Kim;Hye Rang Park
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.2
    • /
    • pp.47-58
    • /
    • 2023
  • The quality and yield of crops produced using field cultivation are expected to decrease due to the recent global climate change caused by extreme weather. The plant reproductive stage associated with crop yields is a highly vulnerable period to global warming caused by high temperatures. This study analyzed the adzuki bean's yield properties, antioxidant contents, and pollen viability of adzuki bean (Vigna angularis L.) under high-temperature stress and growth periods in a temperature gradient greenhouse that forms 0 to 4℃ above the outside temperatures. As the main variety of red beans cultivated in Korean farms, the "Arari" red bean was grown in the rain shield greenhouse and the temperature gradient greenhouse from 2021 to 2022 in Milyang, Korea. Compared to 2022, it showed a 0 - 1.0℃ lower temperature during the whole growth period in 2021. However, its average temperatures were 0 - 3.7℃ higher in the vegetative stage and 0.4 - 2.4℃ higher in the anthesis stage in 2021. The lowest yield (6.8 ± 0.7 g) was at the highest temperature (T4: low, 23.6℃; average, 28.5℃; high, 35.8℃) during the anthesis stage in 2021. The temperatures of the mature stage were 1.7 - 3.9℃, which were higher in 2022 than in 2021, although the low temperatures of 2022 were lower than in 2021. The yields of the mature stage in 2022 increased more than in 2021 because of the high temperature of the mature stage. The growth and yield were good at 40.5℃ in the vegetative stage. However, growth was poor when the average temperature was 27.0℃ or higher, and yields decreased during the flowering period. Total polyphenol and flavonoid contents were increased, and the pollen viability was 40.75% in the whole growth period at high temperature (T4: low, 22.9℃; average, 28.8℃; high, 36.9℃). These results showed that the antioxidant levels increased when the antioxidant component was affected at higher temperatures than at normal. In contrast, the pollen viability-related yield decreased as the temperature increased. Our results are the basic data for field growers and the breeding of thermos-tolerance in adzuki beans to prepare for the changeable future climate.

Evaluation of Reproductive Growth in a Mature Stand of Korean Pine under Simulated Climatic Condition (국지기후가 잣나무 성숙임분의 생식생장에 미치는 영향분석)

  • 김일현;신만용;김영채;전상근
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.4
    • /
    • pp.185-198
    • /
    • 2001
  • This study was conducted to reveal the effects of local climatic conditions on reproductive growth in a mature stand of Korean white pine based on climatic estimates. For this, the reproductive growth such as production and characteristics of cone and seed were first measured and summarized for seven years from 1974 to 1980. The local climatic conditions in the study site were also estimated by both a topoclimatological method and a spatial statistical technique. The local climatic conditions were then correlated with and regressed on the growth factors to reveal the relationships between the climatic estimates and the reproductive growth. Average number of conelet formation per tree showed highly negative correlation with some climatic variables related to minimum temperature in the year of flower bud differentiation. Especially, the most significant negative correlation were found between average of the minimum temperature for June and July of flower bud differentiation year and the number of conelet formation. There was no significant correlation between the number of cone production and climatic variables. However, total precipitation from December of the flowering year to February of the cone production year showed the most high correlation (r=0.6036) with the number of cone production. It was found that significant climatic variables affecting the amount of cone drop and cone drop percentage were the sum of cloudy days from June of the flowering year to August of the cone production year. Positive correlation was significantly recognized between the average weight of empty seed per cone and total precipitation from December of the flowering year to February of the cone production year. For the percentage of empty seed, five climatic variables among 19 variables were significantly correlated at 10% level. The average weight of a cone showed negative correlation with total precipitation from June of the flowering year to August of the cone production year. It was also found that average weight of a seed had highly negative correlation with total precipitation from December of the flowering year to February of the cone production year. The average weight of cone coat was negatively correlated with two climatic variables derived from clear days, which are sum of clear days from November of the flowering year to March of the cone production year and sum of clear days from December of the flowering year to February of the cone production year. On the other hand, it showed positive correlation with mean temperature of May in the flowering year. The exactly same results were obtained in correlation analysis for the percentage of cone coat.

  • PDF

Studies on the Reducing Methods of Cold Wind Damage of Rice Plant by Installation of Windbreak Net in the Eastern Coastal Area (동해안 냉조풍지대의 방풍망에 의한 수도의 풍해경감방법)

  • 이승필;이광석;최대웅;손삼곤;김칠용
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.32 no.2
    • /
    • pp.163-172
    • /
    • 1987
  • Results obtained from this study conducted to find the effect of wind-break net on reducing cold wind damage in the eastern coastal cold wind damaged area are summarized as follows. The rice critical safe heading date was up to Aug. 10 in the eastern coastal area, which the frequency of gale Aug. 10 to Sep. 10 is high. The frequencies of westries and cold wind from sea were 25%, respectively, in this area. The effects of wind-break net on reducing wind verocity were 26.9, 34,6% with raising air temperature of 0.4-0.7$^{\circ}C$ and water temperature of 0.3-0.5$^{\circ}C$. The effect of wind-break net was up to 10 time's distance of wind-break net's height from wind-break net. The installation of wind-break inhanced to rice growth, so showed the heading date earlier by 2-5days and increased culm length, no.of panicles per hill and no. of spiklets per panicle. The yield decrease in this area was due to sterilization, poor ripening and light 1,000 grain weight. The yields showed 20-28% increase by installation of wind-break net. The effect of wind-break net was most in the installation plot with wind-break net against cold wind from sea and westries installed in the panicle formation stage.

  • PDF

Analysis of Contribution of Climate and Cultivation Management Variables Affecting Orchardgrass Production (오차드그라스의 생산량에 영향을 미치는 기후 및 재배관리의 기여도 분석)

  • Moonju Kim;Ji Yung Kim;Mu-Hwan Jo;Kyungil Sung
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.43 no.1
    • /
    • pp.1-10
    • /
    • 2023
  • This study aimed to confirm the importance ratio of climate and management variables on production of orchardgrass in Korea (1982-2014). For the climate, the mean temperature in January (MTJ, ℃), lowest temperature in January (LTJ, ℃), growing days 0 to 5 (GD 1, day), growing days 5 to 25 (GD 2, day), Summer depression days (SSD, day), rainfall days (RD, day), accumulated rainfall (AR, mm), and sunshine duration (SD, hr) were considered. For the management, the establishment period (EP, 0-6 years) and number of cutting (NC, 2nd-5th) were measured. The importance ratio on production of orchardgrass was estimated using the neural network model with the perceptron method. It was performed by SPSS 26.0 (IBM Corp., Chicago). As a result, EP was the most important variable (100%), followed by RD (82.0%), AR (79.1%), NC (69.2%), LTJ (66.2%), GD 2 (63.3%), GD 1 (61.6%), SD (58.1%), SSD (50.8%) and MTJ (41.8%). It implies that EP, RD, AR, and NC were more important than others. Since the annual rainfall in Korea is exceed the required amount for the growth and development of orchardgrass, the damage caused by heavy rainfall exceeding the appropriate level could be reduced through drainage management. It means that, when cultivating orchardgrass, factors that can be controlled were relatively important. Although it is difficult to interpret the specific effect of climates on production due to neural networking modeling, in the future, this study is expected to be useful in production prediction and damage estimation by climate change by selecting major factors.