DOI QR코드

DOI QR Code

The Effects of Increased Temperature on Yield Properties, Antioxidant Contents, and Pollen Viability of Adzuki Bean (Vigna angularis L.) Responses in Temperature Gradient Greenhouse and Growth Periods

온도구배온실에서 온도상승이 생육시기별 팥의 수량, 항산화 성분, 화분 임성에 미치는 영향

  • Eun Ji Suh (Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Ok Jae Won (Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Jae-Sung Park (Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Won Young Han (Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Jin Hee Seo (Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Sun Tae Kim (Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University) ;
  • Hye Rang Park (Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration)
  • 서은지 (농촌진흥청 국립식량과학원 남부작물부 생산기술개발과) ;
  • 원옥재 (농촌진흥청 국립식량과학원 남부작물부 생산기술개발과) ;
  • 박재성 (농촌진흥청 국립식량과학원 남부작물부 생산기술개발과) ;
  • 한원영 (농촌진흥청 국립식량과학원 남부작물부 생산기술개발과) ;
  • 서진희 (농촌진흥청 국립식량과학원 남부작물부 생산기술개발과) ;
  • 김선태 (부산대학교 자원생명과학대학 식물생명과학과) ;
  • 박혜랑 (농촌진흥청 국립식량과학원 남부작물부 생산기술개발과)
  • Received : 2023.02.14
  • Accepted : 2023.04.24
  • Published : 2023.06.01

Abstract

The quality and yield of crops produced using field cultivation are expected to decrease due to the recent global climate change caused by extreme weather. The plant reproductive stage associated with crop yields is a highly vulnerable period to global warming caused by high temperatures. This study analyzed the adzuki bean's yield properties, antioxidant contents, and pollen viability of adzuki bean (Vigna angularis L.) under high-temperature stress and growth periods in a temperature gradient greenhouse that forms 0 to 4℃ above the outside temperatures. As the main variety of red beans cultivated in Korean farms, the "Arari" red bean was grown in the rain shield greenhouse and the temperature gradient greenhouse from 2021 to 2022 in Milyang, Korea. Compared to 2022, it showed a 0 - 1.0℃ lower temperature during the whole growth period in 2021. However, its average temperatures were 0 - 3.7℃ higher in the vegetative stage and 0.4 - 2.4℃ higher in the anthesis stage in 2021. The lowest yield (6.8 ± 0.7 g) was at the highest temperature (T4: low, 23.6℃; average, 28.5℃; high, 35.8℃) during the anthesis stage in 2021. The temperatures of the mature stage were 1.7 - 3.9℃, which were higher in 2022 than in 2021, although the low temperatures of 2022 were lower than in 2021. The yields of the mature stage in 2022 increased more than in 2021 because of the high temperature of the mature stage. The growth and yield were good at 40.5℃ in the vegetative stage. However, growth was poor when the average temperature was 27.0℃ or higher, and yields decreased during the flowering period. Total polyphenol and flavonoid contents were increased, and the pollen viability was 40.75% in the whole growth period at high temperature (T4: low, 22.9℃; average, 28.8℃; high, 36.9℃). These results showed that the antioxidant levels increased when the antioxidant component was affected at higher temperatures than at normal. In contrast, the pollen viability-related yield decreased as the temperature increased. Our results are the basic data for field growers and the breeding of thermos-tolerance in adzuki beans to prepare for the changeable future climate.

본 연구는 최근 빈번한 고온 노지 재배 피해가 빈번함에 따라 팥 대표 품종 '아라리'의 2021과 2022년 고온구배온실에서 수행된 고온 반응 실험이다. 적정 온도 보다 높은온도 범위에서 팥의 노지 재배시 고온 연구로 국내 품종 '아라리'의 생육 반응, 수량, 화분 활력, 종실 성분 등을 최초로 비교분석 하였다. 1. 세부적인 기상 조건은 2021과 2022년의 최저, 평균, 최고기온 연차간 차이는 2022년 보다 2021년이 전생육기는 0 - 1.0℃로 차이가 적었고 영양생장기 0 - 3.7℃, 개화기는 0.4 - 2.4℃로 높았다. 2021년 보다 2022년에서 등숙기는 최저, 평균 온도는 낮았지만 최고온도는 1.7 - 3.9℃로 높아 연차별 온도에 따라 생육특성이 다르게 나타났다. 2. 연차별 생육기간을 비교해 보면 개화기는 평균 기온차에 의해 2021년 13일, 2022년 27일로 차이가 있었으며 등숙기는 2021년 30일, 2022년 19일로 차이가 있었다. 영양생장기에는 최고 온도가 40.3서도 생육이 양호하였지만 개화기 고온 처리는 평균온도가 27.0℃ 이상이 되면 생육이 불량하여 수량이 낮아지는 경향을 보였다. 2021년에 비해 2022년 등숙기 온도가 최저 온도 1.6 - 1.9℃ 낮고 최고 온도 1.7 - 3.9℃로 높고 기간이 늘어나니 팥의 수량성이 높았다. 3. 전생육기와 영양생장기의 고온 스트레스시 총폴리페놀과 총플라보노이드 함량이 증가하였고 화분 형태와 활력은 대조구와 전생육기T1에서는 통계적으로 차이가 없었지만 T4 (최저온도 22.9℃; 평균온도 28.8℃; 최고온도 36.9℃)에서는 비정상 화분 형태가 45.62%, 급격히 화분 활력이 40.75%로 떨어졌다. 4. 고온 스트레스시 수량은 2021년 개화기 T4 (최저온도 23.6℃; 평균온도 28.5℃; 최고온도 35.8℃)에 2022년은 수량과 화분 임성은 전생육기 T4 (최저온도 22.9℃; 평균온도 28.8℃; 최고온도 36.9℃)에 가장 낮았으며 반면 총폴리페놀과 총플라보노이드는 영양생장기 T4 고온 스트레스가 높은 시기일 때 가장 높았다.

Keywords

Acknowledgement

본 논문은 농촌진흥청 아젠다 사업(과제번호:PJ015125022023)의 지원에 의해 수행하였습니다.

References

  1. Alhaithloul, H. A., F. H. Galal, and A. M. Seufi. 2021. Effect of extreme temperature changes on phenolic, flavonoid contents and antioxidant activity of tomato seedlings (Solanum lycopersicum L.). PeerJ. 9 : e11193.
  2. Amarowicz, R., I. Estrella, T. Hernandez, A. Troszynska, K. Agnieszka, and R. B. Pegg. 2008. Antioxidant activity of extract of adzuki bean and its factions. J. Food Lipids. 15(1) : 119-136. https://doi.org/10.1111/j.1745-4522.2007.00106.x
  3. Bishop, J., G. S. Potts, and H. E. Jones. 2016. Susceptibility of faba bean (Vicia faba L.) to heat stress during floral development and anthesis. J. Agron. Crop Sci. 202 : 508-517. https://doi.org/10.1111/jac.12172
  4. Bita, C. E., and T. Gerats. 2013. Plant tolerance to high temperature in a changing environment : scientific fundamentals and production of heat stress-tolerant crops. Front. Plant Sci. 4 : 273.
  5. Cai, C., X. Yin, S. He, W. Jiang, and C. Si. 2016. Responses of wheat and rice to factorial combinations of ambient and elevated CO2 and temperature in FACE experiments. Glob. Change Biol. 22 : 856-874. https://doi.org/10.1111/gcb.13065
  6. Chun, H. C., K. Y. Jung, Y. D. Choi, S. Lee, S. B. Song, J. Y. Ko, J. M. Choi, and Y. W. Jang. 2017. Differences in yields, antioxidant compounds, and antioxidant activity of ethanolic extracts among 11 adzuki bean cultivars (Vigna angularis L.) cultivated on a somewhat poorly drained paddy field. Korean J. Crop Sci. 62(3) : 203-213.
  7. Gibson, L. R., and R. E. Mullen. 1996. Soybean seed composition under high day and night growth temperatures. J. Am. Oil Chem. Soc. 73(6) : 733-737. https://doi.org/10.1007/BF02517949
  8. Han, X., F. Yang, Y. Zhao, H. Chen, Z. Wan, and L. Li. 2021. iTRAQ based protein profile analysis revealed key proteins involved in regulation of drought-tolerance during seed germination in adzuki bean. Sci. Rep. 11(1) : 1-12. https://doi.org/10.1038/s41598-020-79139-8
  9. Hasanuzzaman, M., K. Nahar, M. M. Alam, R. Roychowdhury, and M. Fujita. 2013. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int. J. Mol. Sci. 14(5) : 9643-9684. https://doi.org/10.3390/ijms14059643
  10. Intergovernmental Panel on Climate Change (IPCC). 2022. Climate change 2022 : Mitigation of climate change, the working group I contribution.
  11. Kantolic, A. G., G. E. Peralta, and G. A. Slafer. 2013. Seed number responses to extended photoperiod and shading during reproductive stage in indeterminate soybean. Eur. J. Agron. 51 : 91-100. https://doi.org/10.1016/j.eja.2013.07.006
  12. Kim, Y. S., J. H. Song, G. Choi, G. Lee, and Y. S. Ju. 2020. Comparative study on the external micro-morphology of 3 kinds of minute pollen and spore Herbs (Pini Pollen, Typhae Pollen, Lygodii Spora) utilizing scanning electron microscope. Korea J. Herbol. 35(1) : 9-18.
  13. Koti, S., K. R. Reddy, V. R. Reddy, V. G. Kakani, and D. Zhao. 2005. Interactive effects of carbon dioxide, temperature, and ultraviolet-B radiation on soybean (Glycine max L.) flower and pollen morphology, pollen production, germination, and tube lengths. J. Exp. Bot. 412 : 725-736. https://doi.org/10.1093/jxb/eri044
  14. Krasensky, J., and C. Jonak. 2012. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J. Exp. Bot. 63(4) : 1593-1608. https://doi.org/10.1093/jxb/err460
  15. Lee, K. J., D. N. Nauyen, D. H. Choi, H. Y. Ban, and B. W. Lee. 2015. Effects of elevated air temperature on yield and yield components of rice. Korean J. Agric. For. Meteorol. 17(2) : 156-164. https://doi.org/10.5532/KJAFM.2015.17.2.156
  16. Lee, Y. H., H. S. Cho, J. H. Kim, W. G. Sang, P. Shin, J. K. Baek, and M. C. Seo. 2018. The effects of increased temperature on soybean [Glycine max (L.) Merrill] growth and seed yield responses in temperature gradient chamber. Korean J. Agric. For. Meteorol. 20(2) : 159-165.
  17. Lizaso, J. I., M. Ruiz-Ramos, L. Rodriguez, C. Gabaldon-Leal, J. A. Oliveira, I. J. Lorite, and D. Sanchez. 2018. Impact of high temperatures in maize : Phenology and yield components. Field Crops Res. 216 : 129-140. https://doi.org/10.1016/j.fcr.2017.11.013
  18. MAFRARK. 2021. Agriculture, Food and Rural Affairs Statistics Yearbook.
  19. Oh, D., J. H. Ryu, Y. Cho, W. Kim, and J. Cho. 2018. Evaluation of yield and growth responses on paddy rice under the extremely high temperature using temperature gradient field chamber. Korean J. Agric. For. Meteorol. 20(1) : 135-143.
  20. Oh, S. M., J. Jang, K. Park, Y. Kang, J. S. Lee, S. B. Song, T. Yun, and J. Y. Kim. 2022. Yield and antioxidant properties of Korean adzuki bean (Vigna angularis L.) cultivars under different air temperatures and sunshine hours. Korean J. Crop Sci. 67(3) : 189-197.
  21. Peterson, R., J. P. Slovin, and C. Chen. 2010. A simplified method for differential staining of aborted and non-aborted pollen grains. Int. J. Plant Biol. 1(2) : e13.
  22. Poter, J. R. and M. A. Semenov. 2005. Crop responses to climatic variation. Philos. Trans. R. Soc. B. 360 : 2021-2035. https://doi.org/10.1098/rstb.2005.1752
  23. Puteh, A. B., M. Thuzar, M. M. A. Mondal, N. A. P. B. Abdullah, and M. R. A. Halim. 2013. Soybean [Glycine max (L.) Merrill] seed yield response to high temperature stress during reproductive growth stages. Aust. J. Crop Sci. 7(10) : 1472-1479.
  24. Randhir, R., Y. T. Lin, and K. Shetty. 2004. Stimulation of phenolics, antioxidant and antimicrobial activities in dark germinated mung bean sprouts in response to peptide and phytochemical elicitor. Process Biochem. 39(5) : 637-646. https://doi.org/10.1016/S0032-9592(03)00197-3
  25. Rho, C. W., S. Y. Song, S. T. Hong, K. H. Lee., and I. M. Ryu. 2003. Agronomic characters of Korean adzuki beans (Vigna angularis (Wild.) Ohwi & Ohash). Korean J. Plant Res. 16(2) : 147-154.
  26. Rural Development Administration (RDA). 2018. Agricultural technology guide : Redbean. Rural Development Administration, Jeonju, Korea.
  27. Shin, P., W. G. Sang, J. H. Kim, Y. H. Lee, J. K. Baek, D. W. Kwon, J. I. Cho, and M. C. Seo. 2020. Effects of high temperature and drought on yield and quality of soybean. Korean J. Crop Sci. 65(4) : 346-352.
  28. Singleton, V. L. and J. A. Rossi. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16(3) : 144-158. https://doi.org/10.5344/ajev.1965.16.3.144
  29. Song, E. J., S. M. Park, Q. Wang, and J. K. Lim. 20 14. Identification and characterization of protease-resistant proteins from adzuki beans. Curr. Res. Agric. Life Sci. 32(3) : 149-154.
  30. Song, S. B., J. Y. Ko, M. C. Seo, D. Y. Kwak, K. S. Woo, J. K. Moon, and S. I. Han. 2016. A new small redbean cultivar 'Arari' with lodging resistance and high-quality. Korea J. Breed. Sci. 48(3) : 373-377. https://doi.org/10.9787/KJBS.2016.48.3.373
  31. Sung, J. S., S. B. Song, J. Y. Kim, Y. J. An, J. E. Park, M. E. Choe, J. H. Chu, T. J. Ha, and S. I. Han. 2020. Variation in physicochemical characteristics and antioxidant activities of small redbean cultivars. Korean J. Crop Sci. 65(3) : 231-240.
  32. Umdale, S. D., M. M. Aitawade, N. B. Gaikwad, L. Madhavan, S. R. Yadav, S. R. Rao, and K. V. Bhat. 2017. Pollen morphology of Asian Vigna species (genus Vigna; subgenus Ceratotropis) from India and its taxonomic implications. Turk. J. Bot. 41 : 75-87. https://doi.org/10.3906/bot-1603-31
  33. Wheeler, T. and J. Von Braun. 2013. Climate change impacts on global food security. Science. 341 : 508-513. https://doi.org/10.1126/science.1239402
  34. Woo, K. S., S. B. Song, J. Y. Ko, M. C. Seo, J. S. Lee, J. R. Kang, B. G. Oh, M. H. Nam, H. S. Jeong, and J. Lee. 2010. Antioxidant components and antioxidant activities of methanolic extract from adzuki beans (Vigna angularis var. nipponensis). Korean J. Food Sci. Technol. 42(6) : 693-698.
  35. Zhishen, J., T. Mengcheng, and W. Jianming. 1999. The determination of flavonoid contents in mulberrry and their scavenging effects on superoxide radicals. Food Chem. 64 : 555-559. https://doi.org/10.1016/S0308-8146(98)00102-2