• Title/Summary/Keyword: 일체형 파이프 조인트

Search Result 4, Processing Time 0.017 seconds

Forging Process Analysis of the Multi-forging Die for the Unified Universal Pipe Joint of the Intermediate Shaft (인텀샤프트 일체형 유니버셜 파이프 조인트용 다단조금형의 단조공정해석)

  • Kwon, Hyuk-Hong;Moon, Kwan-Jin;Song, Seung-Eun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.1
    • /
    • pp.33-41
    • /
    • 2010
  • This study was aimed at the design of the dies for the unified pipe joint of the intermediate shaft using the computer simulation to shorten the period of production, on the basis of the process planning which was designed by the field experts. In the computer simulation, 'Deform-3d' and 'eesy-DieOpt' have been used, which are the commercial process analysis and die design program. Through the process analysis, we could know the propriety of the forming process, the inner pressure of the die and the suitable fitting pressure between the insert and the sleeve which was not showing any positive tangential stresses in the insert. Through the simulation of die design, we could know the number of the stress ring, the diameter ratios, the stresses of the die, the shrink fitting tolerance and temperature in the condition of the already determined maximum outer die diameter of the multi-stage former. The validity of the die design using the computer simulation was analyzed by the experiments and the results were satisfactory. As the results of this study, the new and easy die design system for multi-forging has been developed.

Flow Safety Assessment by CFD Analysis in One-touch Insertion Type Pipe Joint for Refrigerant (CFD 해석을 이용한 냉매용 원터치 삽입식 파이프 조인트의 안전성 평가)

  • Kim Eun-Yonung;Park Dong-sam;Kim, Hong-Yong
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2022.10a
    • /
    • pp.303-304
    • /
    • 2022
  • 파이프는 기계, 전자, 전기, 플랜트 등 많은 산업 분야에서 응용기기로 널리 사용되고 있으며, 소방, 화학 등 안전 관련 분야에서도 널리 사용되고 있다. 제품의 다양화에 따라 배관 분야에서도 기술의 중요성이 높아지고 있다. 특히 기존 동관을 스테인리스강으로 변경하는 경우 구조해석이나 유동 해석을 통해 안전성과 유동특성을 평가할 필요가 있다. 자체 개발한 일체형 인서트형 커넥터인 6.35 소켓 모델의 유동 안전성은 CFD 해석을 이용하여 유동유발진동(FIV)평가 과정의 4단계를 통해 진행하였다. 배관계 벽면에 작용하는 압력변동의 진폭은 3,780Pa이하의 수준으로 형성되며, 이는 냉매 배관의 운전압력이나 설계응력과 비교했을 때 매우 작은 수준의 압력으로, 난류에 의한 진동이 배관의 구조안전성에 미치는 영향은 미미한 수준인 것으로 나타났다.

  • PDF

Flow Safety Assessment by CFD Analysis in One-Touch Insertion Type Pipe Joint for Refrigerant (CFD 해석을 이용한 냉매용 원터치 삽입식 파이프 조인트의 유동 안전성 평가)

  • Kim, Eun-young;Park, Dong-sam
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.3
    • /
    • pp.550-559
    • /
    • 2022
  • Purpose: Pipes are widely used as applied devices in many industrial fields such as machinery, electronics, electricity, and plants, and are also widely used in safety-related fields such as firefighting and chemistry. With the diversification of products, the importance of technology in the piping field is also increasing. In particular, when changing the existing copper pipe to stainless steel, it is necessary to evaluate safety and flow characteristics through structural analysis or flow analysis. Method: This study investigated the safety by flow analysis of the 6.35 inch socket model, which are integrated insert type connectors developed by a company, using CFD analysis technique. For CDF analysis, RAN model and LES model are used. Result: As results of the analysis, amplitude of the pressure fluctuation acting on the wall of the piping system is formed at a level of 3,780 Pa or less, which is a very small level of pressure compared with the operating pressure or design stress of the refrigerant piping. Conclusion: These results mean that the effect of vibration caused by turbulence on the structural safety of the pipe is negligible.

Structural Stability Analysis of One-Touch Insertion Type Pipe Joint for Refrigerant (냉매용 원터치 삽입식 파이프 조인트의 안전성 구조해석)

  • Kim, Eun-young;Park, Dong-sam
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.3
    • /
    • pp.542-549
    • /
    • 2022
  • Purpose: Pipes are widely used as applied devices in many industrial fields such as machinery, electronics, electricity, and plants, and are also widely used in safety-related fields such as firefighting and chemistry. With the diversification of products, the importance of technology in the piping field is also increasing. In particular, when changing the existing copper pipe to stainless steel, it is necessary to evaluate safety and flow characteristics through structural analysis or flow analysis. Method: This study investigated the structural stability of the 6.35 and 15.88 socket models, which are integrated insert type connectors developed by a company, using FEM. For structural analysis, HyperMesh as pre-processor, HYPER VIEW as post-processor, and LS-DYNA as solver were used. Result: In the case of 6.35 socket, the maximum stresses at hook, holder and hinge were 95.02MPa, 19.59MPa and 44.01MPa, respectively, and in case of 15.88 socket, it was 127.7 MPa, 40.09MPa and 45.23MPa, respectively. Conclusion: Comparing the stress distribution of the two socket models, the stress in the 15.88 socket, which has a relatively large outer diameter, appears to be large overall, but it is significantly lower than the yield stress of each material, indicating that there is no problem in structural safety in both models.