• Title/Summary/Keyword: 일차 침전지

Search Result 5, Processing Time 0.019 seconds

Control strategy of primary clarifier operation in wastewater treatment plant during rainfall inflow (초기강우 유입 시 하수처리시설 일차 침전지 운전제어 전략)

  • You, Kwang Tae;Kwon, Hyuk Jae
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.11
    • /
    • pp.947-950
    • /
    • 2019
  • The main feature of this paper is to provide a driving control strategy to improve the primary clarifier treatment efficiency in the initial rainfall inflow. With the recent development of IoT technology and sensing technology, the basis for operation control of wastewater treatment facilities has been improved. As a result of improving the efficiency of treatment of primary clarifier using on-line measurement results, it is possible to minimize the outflow of untreated sewage and contribute to the improvement of operation efficiency of wastewater treatment plants.

A Performance Evaluation of the Highly Efficient Coagulation System for the Treatment of Overflows from Primary Clarifier in WWTP (강우시 하수처리장 일차침전지 월류수 처리를 위한 고효율응집시스템의 적용성 평가)

  • Gwon, Eun-Mi;Oh, Seok-Jin;Kim, Heung-Seup;Cho, Seung-Ju;Lee, Seung-Chl;Ha, Sung-Ryong;Lim, Chea-Hoan;Park, Ji-Hoon;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.3
    • /
    • pp.391-398
    • /
    • 2011
  • This study is to develop highly efficient coagulation system(HECS) that runs treatment with a short retention time to cover the overflow in the rain, which coagulation, mixing and settling are contacted in a single reactor and to estimate the applicability. Setting up 100ton/day-size pilot scale plant, the results of continuous operation in case of runoff, maintaining 20 minute-retention time at optimum chemical injection condition(Alum 100mg/L, Polymer 1.0mg/L) shows the highest removal efficiency(Turbidity 93.1%, TCODcr 80.6%, BOD 81.8%, SS 92.5%, TN 72.3% and T-P 87.3%). It was estimated that the large amount of cost for separate sewage system and the size of area for system instruction can be reduced if the HECS is applied for CSOs treatment because the HECS is so compact and quickly. When we see the results, HECS from this study could be able to treat the pollutant quickly within a short retention time only with coagulant and polymer, which could show high applicability.

Finding the operation conditions to minimize nitrous oxide emission from MLE configuration wastewater treatment plant using computer simulation program (컴퓨터 시뮬레이션을 이용한 MLE 공법 하수처리장에서 최저 아산화질소 발생 운전 조건 파악)

  • Jisoo Han;Mincheol Kim;Byonghi Lee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.2
    • /
    • pp.19-38
    • /
    • 2023
  • Nitrous oxide, one of the six greenhouse gases from Kyoto protocol, is known to be emitted in biological nitrification and denitrification reactions at wastewater treatment plant. In this study, EQPS which is a computer program that can simulate nitrous oxide gas emission amount at wastewater treatment plants is used. The MLE process which treats wastewater from combined sewer is studied. Operational variables which are MLR, water temperature at reactor and primary clarifier by-pass percentage are changed to define the condition which produces the least amount of nitrous oxide gas. 200 % of MLR, 20 ℃ of water temperature at bioreactor and 15 % of primary clarifier by-pass percentage are shown the least nitrous oxide emission factor. Also, it is found that the deep aeration tank produces less amount of nitrous oxide gas since less air is required to meet oxygen demand in this type of aeration tank.

An Investigation of the Causes of Filamentous Bulking at the Southerly Wastewater Treatment Plant in Columbus, Ohio (활성슬러지 하수처리장에서의 Filamentous Bulking의 원인규명을 위한 조사연구)

  • Ko, Kwang Baik;Sykes, Robert M.
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.3
    • /
    • pp.77-87
    • /
    • 1987
  • A series of bench scale activated sludge units were operated to find the causes of filamentous bulking(Schizothrix calcicola) at the Southerly Wastewater Treatment Plant. The results shows that the algal bulking problem is caused by the combination of fermented brewery waste and a low/high DO pattern in the aeration basin. The volatile fatty acids in the influent are not themselves the only cause of bulking but indicators of an unidentified substance that either suppresses zoogloeal growth or stimulates algal growth during low DO conditions, because the volatile fatty acids do not stimulate algal growth unless they are added to a sewage that already contains, some fermented brewery waste.

  • PDF

The Role of Primary Clarifier in Biological Processes for Nutrient Removal (생물학적 질소·인제거 공정에서 일차 침전지의 영향)

  • Whang, Gye-Dae;Kim, Tae-Kyung
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.1
    • /
    • pp.19-26
    • /
    • 2007
  • The lab-scale BNR processes fed with Municipal Wastewater Before or After Primary Clarifier (MWBPC or MWAPC) were operated to observe the behavior of particle organic matter in terms of nitrification and denitrification efficiency. As a result of the fractionation of the COD from MWBPC or MWAPC using an aerobic respirometric serum bottle reactor, the total mass of biodegradable organic matter from MWBPC is about 52% greater than the mass from MWAPC. Batch reactors were operated to observe the effect of the Particulate Organic Matter (POM) on substrate utilization for denitrification. Although the consumption of POM for denitrification was observed, the increment of the Specific Denitrification Rate (SDNR) was not great. In terms of the effect of POM on nitrification at different HRTs, activate sludge reactors were operated to determine the optimal HRT when MWBPC and MWAPC were fed relatively. All reactors showed a great organic matter removal efficiency. Reactors fed with MWAPC had obtained the nitrification efficiency above 90% when the HRT of 4 hr, at least, was maintained, while reactors fed with MWBPC had same efficiency when the HRT longer than 5 hr was kept. Three parallel $A^2/O$ systems fed with MWBPC or MWAPC relatively were operated to investigate the effects of POM on BNR processes with varying the HRT of an anoxic reactor. For all systems, the efficiency of organic matter removal and denitrification, respectively, was great and about the same. In case of denitrification efficiency, system with MWAPC had 1.5% lower than system with MWBPC at the same HRT of anoxic reactor of 2 hr, and the increasing the HRT of the anoxic reactor by 1 hr in systems fed with MWBPC resulted in a 3.5% increment. The denitrification rate was similar while the consumption of organic matter in systems fed with MWBPC was higher than system fed with MWBPC. It suggests that POM in MWBPC was not be used significantly as a substrate for denitrification in system with the HRT of 3 hr of an anoxic reactor.