• Title/Summary/Keyword: 일사 관측

Search Result 161, Processing Time 0.021 seconds

Real-Time Micro-Weather Factors of Growing Field to the Epidemics of Rice Blast (벼 도열병 Epidemics에 미치는 재배 포장 실황기상 요인)

  • Kwon, Jae-Oun;Lee, Soon-Gu
    • Research in Plant Disease
    • /
    • v.8 no.4
    • /
    • pp.199-206
    • /
    • 2002
  • It was investigated on the relationship of the rice blast epidemics and the real-time meteorological factors, at the experimental paddy field in 1997. Weather factors(temperature, relative humidity, irradiation, precipitation, the direction of wind, wind speed, soil temperature and leaf-wetness, etc) were measured by using the automated weather station. The most influenced weather factor to blast epidemics, was the average max-temp($R^2$= 0.95) during 10 days before leaf blast epidemics, while the least thing was wind speed($R^2$= 0.24). The most potential weather factors correlated with the blast epidemics were T-ave(average temperature), T-max(maximum temperature), RH(Relative Humidity) and RD(Relative Humidity > 90% hrs). A statistics model(the regression equation) of the blast epidemics with the potential weather factors, was established as tallows ; Y = -3410.91 - 23.91 $\times$ T-ave + 28.56 $\times$ T-max + 41.0 $\times$ RH - 3.75 $\times$ RD, ($R^2$= 0.99). (T-ave >= 19$^{\circ}C$, T-max - T-ave >= 5.2$^{\circ}C$ and RH% >= 90.4%). According to the fitness test($\chi$$^2$) of the model, the observed blast disease severity was quite close to those expected.

Variations in Plankton Assemblage in a Semi-Closed Chunsu Bay, Korea (반폐쇄적인 천수만 해역의 플랑크톤 군집 변화)

  • Lee, Jae-Kwang;Park, Chul;Lee, Doo-Byoul;Lee, Sang-Woo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.2
    • /
    • pp.95-111
    • /
    • 2012
  • Relationship between plankton assemblage and environmental factors in a semi-closed Chunsu Bay was examined. Temporal changes in phytoplankton assemblage was rather drastic than those found in most Korean coastal area in the Yellow Sea primarily due to the seawater temperature (T) and nutrient input from the dikes nearby. Freshwater discharge seemed to cause winter time increase of Diatoms (February) and summer time increase of Dinoflagellates at surface (July to August). Structural change in cell size with time was also found in Diatom. Zooplankton community structure was also changed with season probably due to the food concentration, seawater temperature and salinity (S). From principal component analysis (PCA) of zooplankton distribution, it was postulated that seasonal environmental changes such as T and S could explain about 32% of variability in zooplankton distribution along with phytoplankton cell numbers, while freshwater discharge could explain about 17%. Comparing with past data of 1985-1986, 1991-1992, the distributional patterns and percent composition of major species, Acartia hongi, Paracalanus parvus sensu lato and Centropages abdominalis, were similar. However, the abundances have been increased more than three times. The composition of other taxa than copepods showed significant changes.

Coastal Current Along the Eastern Boundary of the Yellow Sea in Summer: Numerical Simulations (여름철 황해 동부 연안을 따라 흐르는 연안 경계류: 수치 모델 실험)

  • Kwon, Kyung-Man;Choi, Byoung-Ju;Lee, Sang-Ho;Cho, Yang-Ki;Jang, Chan-Joo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.16 no.4
    • /
    • pp.155-168
    • /
    • 2011
  • Coastal boundary current flows along the eastern boundary of the Yellow Sea and its speed was about 0.l m/s during the summer 2007. In order to find major factors that affect the coastal boundary current in the eastern Yellow Sea, three-dimensional numerical model experiments were performed. The model simulation results were validated against hydrographic and current meter data in the eastern Yellow Sea. The eastern boundary current flows along the bottom front over the upper part of slopping bottom. Strength and position of the current were affected by tides, winds, local river discharge, and solar radiation. Tidal stirring and surface wind mixing were major factors that control the summertime boundary currents along the bottom front. Tidal stirring was essential to generate the bottom temperature front and boundary current. Wind mixing made the boundary current wider and augmented its north-ward transport. Buoyancy forcing from the freshwater input and solar radiation also affected the boundary current but their contributions were minor. Strong (weak) tidal mixing during spring (neap) tides made the northward transport larger (smaller) in the numerical simulations. But offshore position of the eastern boundary current's major axis was not apparently changed by the spring-neap cycle in the mid-eastern Yellow Sea due to strong summer stratification. The mean position of coastal boundary current varied due to variations in the level of wind mixing.

Optical Properties of Aerosol at Gongju Estimated by Ground-based Measurements Using Sky-radiometer (스카이라디오미터(Sky-radiometer)로 관측된 공주지역 에어로솔의 광학적 특성)

  • Kwak, Chong-Heum;Suh, Myoung-Seok;Kim, Maeng-Ki;Kwak, Seo-Youn;Lee, Tae-Hee
    • Journal of the Korean earth science society
    • /
    • v.26 no.8
    • /
    • pp.790-799
    • /
    • 2005
  • We investigate the optical properties of aerosols over Gongju by an indirect method using the pound measurement, Sky-radiometer. The analysis period is from January to December, 2004. Skyrad. pack.3 is used to estimate the optical properties, such as the aerosol optical thickness (AOT), single scattering albedo (SSA), ${\AA}ngstron$ exponent $({\alpha})$ and size distribution, of aerosols from the ground measured radiance data. And qualify control is applied to minimize the cloud-contaminated data and improve the quality of analysis results. The 12-month average of AOT, ${\alpha}$, and SSA are 0.46, 1.14, and 0.91, respectively. The average volume spectra of aerosols shows a bi-modal distribution, the first peak at fine mode and the second peak at coarse mode. AOT and coarse particles clearly increases while SSA decreases during the Asian dust events. The optical properties of aerosols at Gongju vary with?seasons, but those are not influenced by the wind direction.

Rock-Surface Temperatures of Baeknokdam Northwest Face in the Summit Area of Mt. Halla (한라산 백록담 서북벽 암온의 향별 특성)

  • KIM, Taeho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.3
    • /
    • pp.109-121
    • /
    • 2012
  • Rock-surface temperatures were observed at a trachytic lava dome, called as Baeknokdam Northwest Face, in the summit area of Mt. Halla, Jeju Island, to examine the frequency and occurrence season of freeze-thaw cycles and the rate of temperature changes during a freezing period. Long-term measurements were recorded over 18 months from November 2006 to April 2008, at a 1-hour logging interval and rock depth of 1.5 cm. Both diurnal freeze-thaw cycles and effective freeze-thaw cycles appear in larger numbers on a south-facing rock face than a north-facing rock face. The diurnal cycles were dominantly observed on February and March for the south face and on November and April for the north face, respectively. The annual freeze-thaw cycles were confirmed in terms of the presence of seasonal freezing periods lasting from mid-November to mid-April for the south face and from early-November to late-April for the north face, respectively. The rate of decreasing temperatures during the seasonal freezing periods is larger on the north face than the south face. Notwithstanding the lower numbers of freeze-thaw events, the north face experiences a higher frost intensity since the number of hours below $-3^{\circ}C$ is larger on the north face than the south face. The number of freeze-thaw events and the duration of days with continuous sub-zero rock temperatures largely depend on the solar radiation controlled by the aspect of the monitored rock surfaces, and thus the high-frequency short-term frost cycle dominantly appears on the south face and the annual frost cycle on the north face, respectively.

Analysis of the Spatial Distribution of Pan Evaporation Trends (Pan 증발량 추세분포 분석)

  • Rim, Chang-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3B
    • /
    • pp.243-255
    • /
    • 2010
  • The spatial distribution of pan evaporation and pan evaporation trends have been studied. In this study, pan evaporation data from 1973 to 1990 for 56 climatological stations were analyzed. In addition to annual average daily pan evaporation, monthly average daily pan evaporation in April, July, October and January were analyzed, considering seasonal effect. The study results indicate that in case of annual average daily pan evaporation, 38 stations out of 56 stations show decreasing trend. In case of average daily pan evaporation in January, 33 stations show decreasing trend. In April, 38 stations show increasing trend. In July, 47 stations show decreasing trend. In October, 35 stations show increasing trend. Therefore, on the whole, pan evaporation tended to decrease in January, July, and annual basis. On the other hand, pan evaporation tended to increase in April and October. Furthermore, pan evaporation trend in each individual region shows also different trend even though the region is located nearby, indicating that there are geographical and topographical effects on pan evaporation trend. Pan evaporation data and climatic data from 1973 to 2006 for 11 climatological stations were used for trend analysis. Climatic variables such as temperature, relative humidity and wind speed show same or opposite trend direction compared with pan evaporation in annual or monthly basis. Annual and monthly solar radiation trends show the same direction compared with pan evaporation; however, annual and monthly precipitation trends show the opposite direction compared with pan evaporation.

Production of Digital Climate Maps with 1km resolution over Korean Peninsula using Statistical Downscaling Model (통계적 상세화 모형을 활용한 한반도 1km 농업용 전자기후도 제작)

  • Jina Hur;Jae-Pil Cho;Kyo-Moon Shim;Sera Jo;Yong-Seok Kim;Min-Gu Kang;Chan-Sung Oh;Seung-Beom Seo;Eung-Sup Kim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.404-414
    • /
    • 2023
  • In this study, digital climate maps with high-resolution (1km, daily) for the period of 1981 to 2020 were produced for the use as reference data within the procedures for statistical downscaling of climate change scenarios. Grid data for the six climate variables including maximum temperature, minimum temperature, precipitation, wind speed, relative humidity, solar radiation was created over Korean Peninsula using statistical downscaling model, so-called IGISRM (Improved GIS-based Regression Model), using global reanalysis data and in-situ observation. The digital climate data reflects topographical effects well in terms of representing general behaviors of observation. In terms of Correlation Coefficient, Slope of scatter plot, and Normalized Root Mean Square Error, temperature-related variables showed satisfactory performance while the other variables showed relatively lower reproducibility performance. These digital climate maps based on observation will be used to downscale future climate change scenario data as well as to get the information of gridded agricultural weather data over the whole Korean Peninsula including North Korea.

Evaluation of Agro-Climatic Index Using Multi-Model Ensemble Downscaled Climate Prediction of CMIP5 (상세화된 CMIP5 기후변화전망의 다중모델앙상블 접근에 의한 농업기후지수 평가)

  • Chung, Uran;Cho, Jaepil;Lee, Eun-Jeong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.2
    • /
    • pp.108-125
    • /
    • 2015
  • The agro-climatic index is one of the ways to assess the climate resources of particular agricultural areas on the prospect of agricultural production; it can be a key indicator of agricultural productivity by providing the basic information required for the implementation of different and various farming techniques and practicalities to estimate the growth and yield of crops from the climate resources such as air temperature, solar radiation, and precipitation. However, the agro-climate index can always be changed since the index is not the absolute. Recently, many studies which consider uncertainty of future climate change have been actively conducted using multi-model ensemble (MME) approach by developing and improving dynamic and statistical downscaling of Global Climate Model (GCM) output. In this study, the agro-climatic index of Korean Peninsula, such as growing degree day based on $5^{\circ}C$, plant period based on $5^{\circ}C$, crop period based on $10^{\circ}C$, and frost free day were calculated for assessment of the spatio-temporal variations and uncertainties of the indices according to climate change; the downscaled historical (1976-2005) and near future (2011-2040) RCP climate sceneries of AR5 were applied to the calculation of the index. The result showed four agro-climatic indices calculated by nine individual GCMs as well as MME agreed with agro-climatic indices which were calculated by the observed data. It was confirmed that MME, as well as each individual GCM emulated well on past climate in the four major Rivers of South Korea (Han, Nakdong, Geum, and Seumjin and Yeoungsan). However, spatial downscaling still needs further improvement since the agro-climatic indices of some individual GCMs showed different variations with the observed indices at the change of spatial distribution of the four Rivers. The four agro-climatic indices of the Korean Peninsula were expected to increase in nine individual GCMs and MME in future climate scenarios. The differences and uncertainties of the agro-climatic indices have not been reduced on the unlimited coupling of multi-model ensembles. Further research is still required although the differences started to improve when combining of three or four individual GCMs in the study. The agro-climatic indices which were derived and evaluated in the study will be the baseline for the assessment of agro-climatic abnormal indices and agro-productivity indices of the next research work.

Development of Kimchi Cabbage Growth Prediction Models Based on Image and Temperature Data (영상 및 기온 데이터 기반 배추 생육예측 모형 개발)

  • Min-Seo Kang;Jae-Sang Shim;Hye-Jin Lee;Hee-Ju Lee;Yoon-Ah Jang;Woo-Moon Lee;Sang-Gyu Lee;Seung-Hwan Wi
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.366-376
    • /
    • 2023
  • This study was conducted to develop a model for predicting the growth of kimchi cabbage using image data and environmental data. Kimchi cabbages of the 'Cheongmyeong Gaual' variety were planted three times on July 11th, July 19th, and July 27th at a test field located at Pyeongchang-gun, Gangwon-do (37°37' N 128°32' E, 510 elevation), and data on growth, images, and environmental conditions were collected until September 12th. To select key factors for the kimchi cabbage growth prediction model, a correlation analysis was conducted using the collected growth data and meteorological data. The correlation coefficient between fresh weight and growth degree days (GDD) and between fresh weight and integrated solar radiation showed a high correlation coefficient of 0.88. Additionally, fresh weight had significant correlations with height and leaf area of kimchi cabbages, with correlation coefficients of 0.78 and 0.79, respectively. Canopy coverage was selected from the image data and GDD was selected from the environmental data based on references from previous researches. A prediction model for kimchi cabbage of biomass, leaf count, and leaf area was developed by combining GDD, canopy coverage and growth data. Single-factor models, including quadratic, sigmoid, and logistic models, were created and the sigmoid prediction model showed the best explanatory power according to the evaluation results. Developing a multi-factor growth prediction model by combining GDD and canopy coverage resulted in improved determination coefficients of 0.9, 0.95, and 0.89 for biomass, leaf count, and leaf area, respectively, compared to single-factor prediction models. To validate the developed model, validation was conducted and the determination coefficient between measured and predicted fresh weight was 0.91, with an RMSE of 134.2 g, indicating high prediction accuracy. In the past, kimchi cabbage growth prediction was often based on meteorological or image data, which resulted in low predictive accuracy due to the inability to reflect on-site conditions or the heading up of kimchi cabbage. Combining these two prediction methods is expected to enhance the accuracy of crop yield predictions by compensating for the weaknesses of each observation method.

A Study on the Differences in Breeding Call of Cicadas in Urban and Forest Areas (도시와 산림지역 매미과 번식울음 차이 연구)

  • Kim, Yoon-Jae;Ki, Kyong-Seok
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.6
    • /
    • pp.698-708
    • /
    • 2018
  • The purpose of this study was to investigate differences in the breeding call characteristics of cicada species found in urban and forest areas in the central region of Korea by examining the interspecific effects and environmental factors affecting the breeding calls and breeding call patterns. The selected research sites were Gyungnam Apartment in Bangbae-dong, Seoul for the urban area and Chiak Mountain National Park in Wonju for the forest area. The research method for both sites was to record cicada breeding calls for 24 hours with a recorder installed at the site and analyze the results. Data from the Korea Meteorological Administration were used for environmental factors. The research period was from June 19, 2017 to September 30, 2017. As a result of the study, there were differences in the emergence of species between the two research sites: while Platypleura kaempferi, Hyalessa fuscata, Meimuna opalifera, Graptopsaltria nigrofuscata, and Suisha coreana were observed at both sites, Cryptotympana atrata was observed in the urban area and Leptosemia takanonis in the forest area only. The emergence periods of cicadas at the two sites were also different. The activities of P. kaempferi and L. takanonis were noticeable in the forest area. In the urban area, however, L. takanonis was not observed and the duration of activity of P. kaempferi was short. In the urban area, C. atrata appeared and sang for a long period; H. fuscata, M. opalifera, and G. nigrofuscata appeared earlier than in the forest area. S. coreana appeared earlier in the forest area than in the urban area. According to the daily call cycle analysis, even cospecific cicada showed a wide variation in their daily cycle depending on the region and the interspecific effects between different cicadas, and the environmental differences between the urban and forest areas affected the calls of cicadas. The results of correlation analysis between each cicada breeding calls and environmental factors of each site showed positive correlation with average temperature of most cicadas except P. kaempferi and C. atrata. The same species of each site showed positive correlations with more diverse weather factors such as solar irradiance. Logistic regression analysis showed that cicadas with overlapping calling times had significant effects on each other's breeding calls. C. atrata, which appeared only in the urban area, had a positive effect on the calling frequency of H. fuscata, M. opalifera, and G. nigrofuscata, which called in the same period. Additionally, L. takanonis, which appeared only in the forest area, and P. kaempferi had a positive effect on each other, and M. opalifera had a positive effect on the calling frequency of H. fuscata and G. nigrofuscata in the forest area. For the environmental factors, the calling frequency of cicadas was affected by the average temperatures of the urban and forest areas, and cicadas that appeared in the forest area were also affected by the amount of solar radiation. According to the results of statistical analysis, urban cicadas with similar activity periods are influenced by species, especially with respect to urban dominant species, C. atrata. Forest cicadas were influenced by species, mainly M. opalifera, which is a forest dominant species. The results of the meteorological impact analysis were similar to those of the correlation analysis, and were influenced mainly by the temperature, and the influence of the insolation was more increased in the forests.