• Title/Summary/Keyword: 일반강도 콘크리트

Search Result 646, Processing Time 0.028 seconds

Punching Shear Strength and Behavior of CFT Column to RC Flat Plate connections (CFT기둥-RC 무량판 접합부의 펀칭전단강도 및 거동)

  • Lee, Cheol Ho;Kim, Jin Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.4
    • /
    • pp.491-502
    • /
    • 2006
  • This paper summarizes full-scale test results on CFT column-to- flat plate connections has gained wide acceptance subjected to gravity loading. CFT construction has gained wide acceptance in a relatively short time in domestic building construction practice due to its various structural and construction advantages. However, efficient details for CFT column to flat plate connections have not been proposed yet. Based on the strategies that maximize economical field construction, several connecting schemes were proposed and tested. Test results showed strength and connection stiffness exceeding those of R/C flat p late counterparts. A semi-analytical procedure is presented to model the behavior of CFT column-to-flat plate connections. The five parameters to model elastic to post-punching catenary action range are calibrated based on the limited test data of t to progressive collapse prevention design is also illustrated.

Optimization for Precast Prestressed Wide-U Beams with the Least Depth (최소깊이 프리캐스트 프리스트레스트 U형보의 최적화)

  • Yul Sung-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.18-26
    • /
    • 2004
  • The cost of underground work is a dominant factor to determine the total construction fee. It is generally 2 ${\~}$ 2.5 times higher than that of above ground for building with the same height. 'A new precast prestressed framing plan for underground parking building' was suggested with the beam of the least depth - U-type beams. The depth of regular rectangular reinforced concrete beam which is currently used in the underground parking of apartments could be reduced up to 12 ${\~}$ 34cm/story due to the development of a U-beams from the optimum process. Two full scale prototype U-beams were tested in this study. It was found that the Wide U-beams in the test showed higher strength than calculated nominal and design, however need to provide temporary supports to meet the flexural moment of construction load at the simply supported state before the lopping concrete hardens.

The physical properties evaluation and analysis about color revelation of the black-color mortar which applies the Granulated Blast Furnace Slag (고로(高爐)슬래그 미분말(微粉末)을 활용(活用)한 블랙-컬러모르타르 특성(特性) 및 색상발현(色相發現)에 관한 연구(硏究))

  • Kim, Seol-Hwa;Jang, Hong-Seok;So, Seung-Young
    • Resources Recycling
    • /
    • v.19 no.6
    • /
    • pp.86-92
    • /
    • 2010
  • In the many kind of construct-material, the concrete which has the high-strength and a durability is sufficient to use with structure-material. but the color of concrete is very monotony, so generally concrete isn't used the out surface. although color concrete is a method of expressing surface, the combination of pigment and cement cause many physical problem such as efflorescence phenomenon, strength degradation and so on. In this study, It attempt to develop the black mortar using the industrial granulated blast furnace slag and to evaluate basic physical properties compare with general color concrete to solve the color concrete problem. The result of experiment showed that the flow dropped mixing of pigment. but flow increased in proportion to the mixing rate in occasion of mortar that mix granulated blast furnace sla and black mortar which was made granulated blast furnace slag has more visible black color than any mortar.

Ground Vibration Reduction Technology Using High Damping Polymer Concrete (고 감쇠 폴리머 콘크리트를 활용한 지반진동 저감기술에 대한 연구)

  • Kim, Jeong-Jin;Seok, Won-Gyun;We, Joon-Woo;Ahn, So-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.154-160
    • /
    • 2021
  • Recently, there have been increasing construction works carried out in urban centers, which are inducing frequent artificial vibration in the vicinity of existing structures due to such construction works. moreover, in case of industrial estates, vibration is induced due to operation of machines in the surrounding areas, thereby causing problems. meanwhile, in case of ordinary concrete that compose structure has low level of damping capability for vibration. accordingly, there are difficulties in blocking a wide range of vibrations delivered to the structures from outside including not only vibrations generated in the structures themselves but also ground vibration. recently, numerous studies are being carried out actively on high-damping system that markedly enhanced the damping performances of structures by utilizing polymer concrete in order to block the vibrations delivered to the structures through ground. therefore, this study compared the performances of polymer concrete with those of ordinary concrete, polyurethane pad and foamed rubber pad in order to review its performances in reducing ground vibration. for this purpose, review of FRF and vibration acceleration as dynamic characteristics was made. after comparative verification on the dynamic characteristics is made when polymer concrete and other aforementioned materials are applied to underground structures, the possibility of application of polymer concrete to structures is reviewed.

Tensile Strength of Polymer-Modified Asphalt Concrete at Low-Temperature (폴리머 개질아스팔트 콘크리트의 저온 인장강도 특성)

  • Doh, Young-Soo;Kwon, Seung-Zoon;Kim, Kwang-Woo
    • International Journal of Highway Engineering
    • /
    • v.4 no.3 s.13
    • /
    • pp.35-42
    • /
    • 2002
  • Many temperature-related problems are created in asphalt pavement due to the low temperature. In particular, loss of tensile strength due to low temperature is known to be responsible for thermal failure of pavements in cold regions under $-20^{\circ}C$. The objective of this study is to evaluate characteristics of resistance against low-temperature cracking of polymer asphalt concrete mixtures modified with LDPE and SBS. The test results showed that the mixtures had the maximum indirect tensile strength(ITS) at low temperature ranging from $-10^{\circ}C. It was proved through ITS test that the stress due to differential thermal contraction over the tensile strength did generate internal damage at the temperature below $-20^{\circ}C$. It was shown that the asphalt mixtures modified with polymer had better ITS than the normal asphalt mixture at the temperature below $-20^{\circ}C$. Thus the effect of modification was revealed as tensile strength improvement. From the results of this study, it was recommended that polymer-modified asphalt should be used in order to prevent low-temperature cracking in cold region.

  • PDF

A Study on Deflection Characteristic of Composite Girder with Incomplete Interaction (불완전 합성형의 처짐특성에 관한 연구)

  • Yong, Hwan Sun;Kim, Seok Tae;Kim, Yun Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.3 s.36
    • /
    • pp.437-449
    • /
    • 1998
  • In order that the steel girder and the concrete slab act as a composite structure, the connectors must have adequate strength and stiffness. If there are no horizontal or vertical separations at the interface, the connectors are described as rigid, and complete interaction can be said to exist under these idealized circumstances. However, all connectors are flexible to some extent, and therefore incomplete interaction always exists. This paper presents a practical structural analysis of composite girders with incomplete interaction by three methods. One is the stiffness matrix method derived from the general solutions of differential equation, another is the finite element analysis that alternate method of solution treats the structure as a frame and defines the spring as an additional member, and the other is the finite element analysis using principle of virtual work. The deflection characteristic of composite girder is investigated using these three methods. Also, this paper propose a simplified procedure of estimating a degree of imperfection for a composite girder with incomplete interaction using the sectional properties of girder and spring constants of shear connectors.

  • PDF

Seismic Retrofit of Reinforced Concrete Structures Using Steel Braces and Moment Frames (가새와 강골조를 이용한 저층 RC 구조물의 내진보강)

  • Huynh, Chanh Trung;Park, Kyoung-Hoon;Kim, Jin-Koo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.5
    • /
    • pp.509-516
    • /
    • 2010
  • In this study a seismic retrofit scheme for the reinforced concrete moment framed structures was investigated using steel bracing and moment frames. The analysis model structure is a 3-story 3-bay moment frame structure designed only for gravity load. The stress/strain concentration in brace-RC frame connection was investigated using finite element analysis. To prevent premature joint failure, steel moment frames were placed inside of middle bay of the RC frame. Two types of braces, steel braces and buckling restrained braces(BRBs), were used for retrofit, and the ductility and the strength of the structure before and after the retrofit were compared using nonlinear static and dynamic analyses. According to the analysis results, the strength and ductility of the structure retrofitted by the moment frames and braces increased significantly. The added steel frame did not contribute significantly to the increase of lateral strength mainly because the size is relatively small.

Analytical Study for Performance Evaluation of Studs for Steel Plate Concrete(SC) Walls subjected to Cyclic Loads (반복하중이 가해지는 강판 콘크리트(SC) 벽체에서 스터드의 성능평가를 위한 해석적 연구)

  • Lim, Jin-Sun;Jeong, Young-Do;Yi, Seong-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.35-42
    • /
    • 2015
  • This study analytically reviewed the behavior of Steel Plate Concrete(SC) walls subjected to cyclic loads to investigate the effects of shape and arrangement spacing of studs on the behavior of SC walls. To perform it, 9 cases of finite element analyses considering the different shape and spacing of studs in SC wall were carried out. As the results, the skeleton curves were obtained from the load-displacement history curves and the ultimate and yielding forces were increased as the spacing of studs decrease. In addition, the strength of inclined studs are shown to be bigger compared to that of general studs. The damping ratios are increased as the decrease of strength ratio. Finally, as the decrease of stud spacings, the cumulative dissipated energy was increased and the seismic performance was improved.

Improving Quality of Eco-Mortar Incorporating Blast Furnace Slag and Recycled Aggregate Depending on Replacement Gypsum and Cement (고로슬래그 미분말과 순환잔골재를 사용하는 친환경 모르타르에 탈황석고 및 시멘트에 의한 품질향상)

  • Baek, Byung Hoon;Han, Cheon-Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.2
    • /
    • pp.193-199
    • /
    • 2015
  • As a solution of both environmental issue of reducing carbon dioxide emission and sustainable issue of exhausting natural resources, in concrete industry, many research on recycling various by-products or industrial wastes as the concrete materials has been conducted. The aim of this research is feasibility analysis of additional reaction with ordinary Portland cement and flue gas desulfurization gypsum based on the blast furnace slag and recycled fine aggregate based mortar to achieve the normal strength range. Consequently, in the case of mortar replaced 10% FGD and 30% OPC for BS, 80% of plain OPC mortar's compressive strength was achieved. Furthermore, when the water-to-binder ratio is decreased to keep the practically similar level of flow, it is expected to be achieve the equivalent compressive strength to plain OPC mortar.

Evaluation on Compressive Strength Development and Thermal Conductivity of Cement Pastes Containing Aerogels with Hydrophilic Surface Treatment (친수성 표면개질의 에어로겔을 혼입한 시멘트 페이스트의 압축강도 발현 및 열전도율 평가)

  • Ahn, Tae-Ho;Park, Jong-Beom;Yoon, Hyun-Sub;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.1
    • /
    • pp.51-57
    • /
    • 2018
  • The objective of the present study is to examine the feasibility on the development of high-insulation concrete using aerogels with hydrophilic surface treatment. To prevent the segregation and enhance the dispersibility of agerogels in the cement pastes, the substrate of aerogels was modified to be hydrophobic property using surfactant. The modified aerogels were added from 0% to 100% of the cement volume at the interval of 25% under the constant cement content. Some cement pastes showed segregation phenomenon and flocculation of aerogels during mixing phase. The addition of aerogels decreased the compressive strength of cement pastes but enhanced the thermal conductivity. The thermal conductivity of pastes with 100% aerogels was lower by 43% when compared with that measured in the conventional paste. To improve the compressive strength and insulation capacity of concrete containing aerogels, a reliable surface treatment method of aerogels needs to be further investigated.