• Title/Summary/Keyword: 인텀 샤프트

Search Result 2, Processing Time 0.014 seconds

Numerical Study on Evaluation of Design Parameters of Intermediate Shaft in Steering System (조향장치용 인텀 샤프트 설계변수 평가를 위한 수치적 연구)

  • Kang, Young Su;Doo, Min Soo;Kim, Jeong;Kang, Beom Soo;Song, Woo Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.12
    • /
    • pp.1351-1359
    • /
    • 2012
  • Due to the development of electric and hybrid vehicles, the trend has changed from hydraulic power steering system to electric power steering system (EPS). In this paper, design parameters are deduced through the structural analysis based on the finite element analysis for the intermediate shaft of the EPS on the market. By analyzing the design parameters, the structure design is improved to support the required high torque on the EPS. The numerical analysis is performed to obtain the improved design of the intermediate shaft model and the analysis results are compared with the existing model. It is noted through this numerical approach that the improved design of the intermediate shaft can be acquired the structural safety and high stiffness than existing model.

Forging Process Analysis of the Multi-forging Die for the Unified Universal Pipe Joint of the Intermediate Shaft (인텀샤프트 일체형 유니버셜 파이프 조인트용 다단조금형의 단조공정해석)

  • Kwon, Hyuk-Hong;Moon, Kwan-Jin;Song, Seung-Eun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.1
    • /
    • pp.33-41
    • /
    • 2010
  • This study was aimed at the design of the dies for the unified pipe joint of the intermediate shaft using the computer simulation to shorten the period of production, on the basis of the process planning which was designed by the field experts. In the computer simulation, 'Deform-3d' and 'eesy-DieOpt' have been used, which are the commercial process analysis and die design program. Through the process analysis, we could know the propriety of the forming process, the inner pressure of the die and the suitable fitting pressure between the insert and the sleeve which was not showing any positive tangential stresses in the insert. Through the simulation of die design, we could know the number of the stress ring, the diameter ratios, the stresses of the die, the shrink fitting tolerance and temperature in the condition of the already determined maximum outer die diameter of the multi-stage former. The validity of the die design using the computer simulation was analyzed by the experiments and the results were satisfactory. As the results of this study, the new and easy die design system for multi-forging has been developed.