• Title/Summary/Keyword: 인터넷 정보 신뢰도

Search Result 1,152, Processing Time 0.029 seconds

A Study on the Current Situation and Problems of Agricultural Products e-Commerce in Korea (B2B 농산물 전자상거래 활성화 방안과 과제에 관한 연구)

  • Kim, Kyu-Hyong;Lee, Moon-Seok
    • International Commerce and Information Review
    • /
    • v.13 no.1
    • /
    • pp.29-52
    • /
    • 2011
  • A predictable and manageable output is desirable for most businesses. However, it is very difficult to control the quality and quantity of products in the food and agriculture business. Predictable outputs help managers plan their marketing, sales, and inbound and outbound logistics, but these are not easy to achieve in the food and agriculture business. Various industries have adopted different levels of automation and utilization of information systems for quality/quantity control; however e-Commerce of the food and agriculture industry is far behind those of other industries. Today, the food and agriculture industry is supposed to be more integrated than ever in order to reduce risks and improve processing costs, from farm to table. Since its operations including production, processing, storage, distribution, and management are dispersed all over the world, the food and agricultural industries now depend more on IT than other industries. This study attempts to develop a framework to analyze the current situation of agricultural product e-Commerce in Korea, and finds out the actual situation of the farmers operating on-line shopping systems through the developed framework and suggests some improvements.

  • PDF

A Study on the User Acceptance Model of Artificial Intelligence Music Based on UTAUT

  • Zhang, Weiwei
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.6
    • /
    • pp.25-33
    • /
    • 2020
  • In this paper, the purpose is to verify the impact of performance expectations, effort expectations, social impact, individual innovation and perceived value on the intent of use and the behavior of use. Used Unified Theory of Acceptance and Use of Technology (UTAUT) to verify the applicability of this model in China, and established the research model by adding two new variables to UTAUT according to the situation of the Chinese market. To achieve this goal, 345 questionnaires were collected for experienced music creators using artificial intelligence nuggets in China by means of Internet research. The collected data were analyzed through frequency analysis, factor analysis, reliability analysis, and structural equation analysis through SPSS V. 22.0 and AMOS V 22.0. The verification of the hypotheses presented in the research model identified the decisive influence factors on the use of artificial intelligence music acceptance by Chinese users. The study is innovative in that it attempts to verify the applicability of UTAUT in the Chinese context. In the construction of the user acceptance model of AI music, three influencing factors will have an effect on users' intentions, and according to the degree of effect, from largest to smallest, they are respectively Perceived Innovativeness, Performance Expectancy and Effort Expectancy. This paper will also provide some management advices, i.e. improving the utility and usability of AI music, encouraging users with individual innovativeness, developing competitive and attractive pricing policies, increasing publicity, and prioritizing word-of-mouth advertising.

A Comparative Study on the Effective Deep Learning for Fingerprint Recognition with Scar and Wrinkle (상처와 주름이 있는 지문 판별에 효율적인 심층 학습 비교연구)

  • Kim, JunSeob;Rim, BeanBonyka;Sung, Nak-Jun;Hong, Min
    • Journal of Internet Computing and Services
    • /
    • v.21 no.4
    • /
    • pp.17-23
    • /
    • 2020
  • Biometric information indicating measurement items related to human characteristics has attracted great attention as security technology with high reliability since there is no fear of theft or loss. Among these biometric information, fingerprints are mainly used in fields such as identity verification and identification. If there is a problem such as a wound, wrinkle, or moisture that is difficult to authenticate to the fingerprint image when identifying the identity, the fingerprint expert can identify the problem with the fingerprint directly through the preprocessing step, and apply the image processing algorithm appropriate to the problem. Solve the problem. In this case, by implementing artificial intelligence software that distinguishes fingerprint images with cuts and wrinkles on the fingerprint, it is easy to check whether there are cuts or wrinkles, and by selecting an appropriate algorithm, the fingerprint image can be easily improved. In this study, we developed a total of 17,080 fingerprint databases by acquiring all finger prints of 1,010 students from the Royal University of Cambodia, 600 Sokoto open data sets, and 98 Korean students. In order to determine if there are any injuries or wrinkles in the built database, criteria were established, and the data were validated by experts. The training and test datasets consisted of Cambodian data and Sokoto data, and the ratio was set to 8: 2. The data of 98 Korean students were set up as a validation data set. Using the constructed data set, five CNN-based architectures such as Classic CNN, AlexNet, VGG-16, Resnet50, and Yolo v3 were implemented. A study was conducted to find the model that performed best on the readings. Among the five architectures, ResNet50 showed the best performance with 81.51%.

Analysis of Knowledge Community for Knowledge Creation and Use (지식 생성 및 활용을 위한 지식 커뮤니티 효과 분석)

  • Huh, Jun-Hyuk;Lee, Jung-Seung
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.4
    • /
    • pp.85-97
    • /
    • 2010
  • Internet communities are a typical space for knowledge creation and use on the Internet as people discuss their common interests within the internet communities. When we define 'Knowledge Communities' as internet communities that are related to knowledge creation and use, they are categorized into 4 different types such as 'Search Engine,' 'Open Communities,' 'Specialty Communities,' and 'Activity Communities.' Each type of knowledge community does not remain the same, for example. Rather, it changes with time and is also affected by the external business environment. Therefore, it is critical to develop processes for practical use of such changeable knowledge communities. Yet there is little research regarding a strategic framework for knowledge communities as a source of knowledge creation and use. The purposes of this study are (1) to find factors that can affect knowledge creation and use for each type of knowledge community and (2) to develop a strategic framework for practical use of the knowledge communities. Based on previous research, we found 7 factors that have considerable impacts on knowledge creation and use. They were 'Fitness,' 'Reliability,' 'Systemicity,' 'Richness,' 'Similarity,' 'Feedback,' and 'Understanding.' We created 30 different questions from each type of knowledge community. The questions included common sense, IT, business and hobbies, and were uniformly selected from various knowledge communities. Instead of using survey, we used these questions to ask users of the 4 representative web sites such as Google from Search Engine, NAVER Knowledge iN from Open Communities, SLRClub from Specialty Communities, and Wikipedia from Activity Communities. These 4 representative web sites were selected based on popularity (i.e., the 4 most popular sites in Korea). They were also among the 4 most frequently mentioned sitesin previous research. The answers of the 30 knowledge questions were collected and evaluated by the 11 IT experts who have been working for IT companies more than 3 years. When evaluating, the 11 experts used the above 7 knowledge factors as criteria. Using a stepwise linear regression for the evaluation of the 7 knowledge factors, we found that each factors affects differently knowledge creation and use for each type of knowledge community. The results of the stepwise linear regression analysis showed the relationship between 'Understanding' and other knowledge factors. The relationship was different regarding the type of knowledge community. The results indicated that 'Understanding' was significantly related to 'Reliability' at 'Search Engine type', to 'Fitness' at 'Open Community type', to 'Reliability' and 'Similarity' at 'Specialty Community type', and to 'Richness' and 'Similarity' at 'Activity Community type'. A strategic framework was created from the results of this study and such framework can be useful for knowledge communities that are not stable with time. For the success of knowledge community, the results of this study suggest that it is essential to ensure there are factors that can influence knowledge communities. It is also vital to reinforce each factor has its unique influence on related knowledge community. Thus, these changeable knowledge communities should be transformed into an adequate type with proper business strategies and objectives. They also should be progressed into a type that covers varioustypes of knowledge communities. For example, DCInside started from a small specialty community focusing on digital camera hardware and camerawork and then was transformed to an open community focusing on social issues through well-known photo galleries. NAVER started from a typical search engine and now covers an open community and a special community through additional web services such as NAVER knowledge iN, NAVER Cafe, and NAVER Blog. NAVER is currently competing withan activity community such as Wikipedia through the NAVER encyclopedia that provides similar services with NAVER encyclopedia's users as Wikipedia does. Finally, the results of this study provide meaningfully practical guidance for practitioners in that which type of knowledge community is most appropriate to the fluctuated business environment as knowledge community itself evolves with time.

A User Profile-based Filtering Method for Information Search in Smart TV Environment (스마트 TV 환경에서 정보 검색을 위한 사용자 프로파일 기반 필터링 방법)

  • Sean, Visal;Oh, Kyeong-Jin;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.97-117
    • /
    • 2012
  • Nowadays, Internet users tend to do a variety of actions at the same time such as web browsing, social networking and multimedia consumption. While watching a video, once a user is interested in any product, the user has to do information searches to get to know more about the product. With a conventional approach, user has to search it separately with search engines like Bing or Google, which might be inconvenient and time-consuming. For this reason, a video annotation platform has been developed in order to provide users more convenient and more interactive ways with video content. In the future of smart TV environment, users can follow annotated information, for example, a link to a vendor to buy the product of interest. It is even better to enable users to search for information by directly discussing with friends. Users can effectively get useful and relevant information about the product from friends who share common interests or might have experienced it before, which is more reliable than the results from search engines. Social networking services provide an appropriate environment for people to share products so that they can show new things to their friends and to share their personal experiences on any specific product. Meanwhile, they can also absorb the most relevant information about the product that they are interested in by either comments or discussion amongst friends. However, within a very huge graph of friends, determining the most appropriate persons to ask for information about a specific product has still a limitation within the existing conventional approach. Once users want to share or discuss a product, they simply share it to all friends as new feeds. This means a newly posted article is blindly spread to all friends without considering their background interests or knowledge. In this way, the number of responses back will be huge. Users cannot easily absorb the relevant and useful responses from friends, since they are from various fields of interest and knowledge. In order to overcome this limitation, we propose a method to filter a user's friends for information search, which leverages semantic video annotation and social networking services. Our method filters and brings out who can give user useful information about a specific product. By examining the existing Facebook information regarding users and their social graph, we construct a user profile of product interest. With user's permission and authentication, user's particular activities are enriched with the domain-specific ontology such as GoodRelations and BestBuy Data sources. Besides, we assume that the object in the video is already annotated using Linked Data. Thus, the detail information of the product that user would like to ask for more information is retrieved via product URI. Our system calculates the similarities among them in order to identify the most suitable friends for seeking information about the mentioned product. The system filters a user's friends according to their score which tells the order of whom can highly likely give the user useful information about a specific product of interest. We have conducted an experiment with a group of respondents in order to verify and evaluate our system. First, the user profile accuracy evaluation is conducted to demonstrate how much our system constructed user profile of product interest represents user's interest correctly. Then, the evaluation on filtering method is made by inspecting the ranked results with human judgment. The results show that our method works effectively and efficiently in filtering. Our system fulfills user needs by supporting user to select appropriate friends for seeking useful information about a specific product that user is curious about. As a result, it helps to influence and convince user in purchase decisions.

User-Perspective Issue Clustering Using Multi-Layered Two-Mode Network Analysis (다계층 이원 네트워크를 활용한 사용자 관점의 이슈 클러스터링)

  • Kim, Jieun;Kim, Namgyu;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.93-107
    • /
    • 2014
  • In this paper, we report what we have observed with regard to user-perspective issue clustering based on multi-layered two-mode network analysis. This work is significant in the context of data collection by companies about customer needs. Most companies have failed to uncover such needs for products or services properly in terms of demographic data such as age, income levels, and purchase history. Because of excessive reliance on limited internal data, most recommendation systems do not provide decision makers with appropriate business information for current business circumstances. However, part of the problem is the increasing regulation of personal data gathering and privacy. This makes demographic or transaction data collection more difficult, and is a significant hurdle for traditional recommendation approaches because these systems demand a great deal of personal data or transaction logs. Our motivation for presenting this paper to academia is our strong belief, and evidence, that most customers' requirements for products can be effectively and efficiently analyzed from unstructured textual data such as Internet news text. In order to derive users' requirements from textual data obtained online, the proposed approach in this paper attempts to construct double two-mode networks, such as a user-news network and news-issue network, and to integrate these into one quasi-network as the input for issue clustering. One of the contributions of this research is the development of a methodology utilizing enormous amounts of unstructured textual data for user-oriented issue clustering by leveraging existing text mining and social network analysis. In order to build multi-layered two-mode networks of news logs, we need some tools such as text mining and topic analysis. We used not only SAS Enterprise Miner 12.1, which provides a text miner module and cluster module for textual data analysis, but also NetMiner 4 for network visualization and analysis. Our approach for user-perspective issue clustering is composed of six main phases: crawling, topic analysis, access pattern analysis, network merging, network conversion, and clustering. In the first phase, we collect visit logs for news sites by crawler. After gathering unstructured news article data, the topic analysis phase extracts issues from each news article in order to build an article-news network. For simplicity, 100 topics are extracted from 13,652 articles. In the third phase, a user-article network is constructed with access patterns derived from web transaction logs. The double two-mode networks are then merged into a quasi-network of user-issue. Finally, in the user-oriented issue-clustering phase, we classify issues through structural equivalence, and compare these with the clustering results from statistical tools and network analysis. An experiment with a large dataset was performed to build a multi-layer two-mode network. After that, we compared the results of issue clustering from SAS with that of network analysis. The experimental dataset was from a web site ranking site, and the biggest portal site in Korea. The sample dataset contains 150 million transaction logs and 13,652 news articles of 5,000 panels over one year. User-article and article-issue networks are constructed and merged into a user-issue quasi-network using Netminer. Our issue-clustering results applied the Partitioning Around Medoids (PAM) algorithm and Multidimensional Scaling (MDS), and are consistent with the results from SAS clustering. In spite of extensive efforts to provide user information with recommendation systems, most projects are successful only when companies have sufficient data about users and transactions. Our proposed methodology, user-perspective issue clustering, can provide practical support to decision-making in companies because it enhances user-related data from unstructured textual data. To overcome the problem of insufficient data from traditional approaches, our methodology infers customers' real interests by utilizing web transaction logs. In addition, we suggest topic analysis and issue clustering as a practical means of issue identification.

The Research on Recommender for New Customers Using Collaborative Filtering and Social Network Analysis (협력필터링과 사회연결망을 이용한 신규고객 추천방법에 대한 연구)

  • Shin, Chang-Hoon;Lee, Ji-Won;Yang, Han-Na;Choi, Il Young
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.4
    • /
    • pp.19-42
    • /
    • 2012
  • Consumer consumption patterns are shifting rapidly as buyers migrate from offline markets to e-commerce routes, such as shopping channels on TV and internet shopping malls. In the offline markets consumers go shopping, see the shopping items, and choose from them. Recently consumers tend towards buying at shopping sites free from time and place. However, as e-commerce markets continue to expand, customers are complaining that it is becoming a bigger hassle to shop online. In the online shopping, shoppers have very limited information on the products. The delivered products can be different from what they have wanted. This case results to purchase cancellation. Because these things happen frequently, they are likely to refer to the consumer reviews and companies should be concerned about consumer's voice. E-commerce is a very important marketing tool for suppliers. It can recommend products to customers and connect them directly with suppliers with just a click of a button. The recommender system is being studied in various ways. Some of the more prominent ones include recommendation based on best-seller and demographics, contents filtering, and collaborative filtering. However, these systems all share two weaknesses : they cannot recommend products to consumers on a personal level, and they cannot recommend products to new consumers with no buying history. To fix these problems, we can use the information which has been collected from the questionnaires about their demographics and preference ratings. But, consumers feel these questionnaires are a burden and are unlikely to provide correct information. This study investigates combining collaborative filtering with the centrality of social network analysis. This centrality measure provides the information to infer the preference of new consumers from the shopping history of existing and previous ones. While the past researches had focused on the existing consumers with similar shopping patterns, this study tried to improve the accuracy of recommendation with all shopping information, which included not only similar shopping patterns but also dissimilar ones. Data used in this study, Movie Lens' data, was made by Group Lens research Project Team at University of Minnesota to recommend movies with a collaborative filtering technique. This data was built from the questionnaires of 943 respondents which gave the information on the preference ratings on 1,684 movies. Total data of 100,000 was organized by time, with initial data of 50,000 being existing customers and the latter 50,000 being new customers. The proposed recommender system consists of three systems : [+] group recommender system, [-] group recommender system, and integrated recommender system. [+] group recommender system looks at customers with similar buying patterns as 'neighbors', whereas [-] group recommender system looks at customers with opposite buying patterns as 'contraries'. Integrated recommender system uses both of the aforementioned recommender systems to recommend movies that both recommender systems pick. The study of three systems allows us to find the most suitable recommender system that will optimize accuracy and customer satisfaction. Our analysis showed that integrated recommender system is the best solution among the three systems studied, followed by [-] group recommended system and [+] group recommender system. This result conforms to the intuition that the accuracy of recommendation can be improved using all the relevant information. We provided contour maps and graphs to easily compare the accuracy of each recommender system. Although we saw improvement on accuracy with the integrated recommender system, we must remember that this research is based on static data with no live customers. In other words, consumers did not see the movies actually recommended from the system. Also, this recommendation system may not work well with products other than movies. Thus, it is important to note that recommendation systems need particular calibration for specific product/customer types.

A Study on the Influence of Originality and Usefulness of Artificial Intelligence Music Products on Consumer Perceived Attractiveness and Purchase intention

  • Meilin, Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.9
    • /
    • pp.45-52
    • /
    • 2020
  • In this paper, we propose an intention to study the purchase of smart music by Chinese consumers. To study the influence of the originality and usefulness of intelligent music products on the purchase intention of Chinese consumers, and to explore how the originality and usefulness of intelligent music products affect the purchase intention. To achieve this goal, 372 questionnaires were collected through the Internet for frequency analysis, factor analysis, confidence analysis and structural equation analysis of data collection, and were carried out by SPSSV22.0 and AMOSV22.0 methods. Research the validation of assumptions in the model to reveal the psychological and behavioral responses of consumers to smart music products. The results show that the originality and usefulness of new products not only directly affect the purchase intention of Chinese consumers, but also indirectly affect their purchase intention by enhancing their attractiveness. The conclusion of this study is of guiding significance for the development of intelligent music product development and marketing strategy.

A Multiple Signature Authentication System Based on BioAPI for WWW (웹상의 BioAPI에 기반한 서명 다중 인증 시스템)

  • Yun Sung Keun;Kim Seong Hoon;Jun Byung Hwan
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.9
    • /
    • pp.1226-1232
    • /
    • 2004
  • Biometric authentication is rising technology for the security market of the next generation. But most of biometric systems are developed using only one of various biological features. Recently, there is a vigorous research for the standardization of various biometric systems. In this paper, we propose a web-based authentication system using three other verifiers based on functional, parametric, and structural approaches for one biometrics of handwritten signature, which is conformable to a specification of BioAPI introduced by BioAPI Consortium for a standardization of biometric technology. This system is developed with a client-server structure, and clients and servers consist of three layers according to the BioAPI structure. The proposed neb-based multiple authentication system of one biometrics can be used to highly increase confidence degree of authentication without additional several biological measurements, although rejection rate is a little increased. That is, the false accept rate(FAR) decreases on the scale of about 1:40,000, although false reject rate(FRR) increases about 2.7 times in the case of combining above three signature verifiers. So the proposed approach can be used as an effective identification method on the internet of an open network. Also, it can be easily extended to a security system using multimodal biometrics.

P2P Streaming Method for QoS-sensitive Multimedia Multicast Applications (QoS에 민감한 멀티미디어 멀티캐스트 응용을 위한 P2P 스트리밍 기법)

  • Park, Seung-Chul
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.9
    • /
    • pp.68-78
    • /
    • 2010
  • As the IP multicast function is very slowly deployed in Internet due to its scalability problem and inter-domain interoperability problem, interest in the P2P(Peer-to-Peer) streaming technologies for the realtime multimedia multicast applications such as IPTV is highly growing. This paper proposes a P2P streaming method for the QoS-sensitive multimedia multicast applications such as highly-interactive personal IPTV and video conferences. The proposed P2P streaming method allows an application to construct a reliable streaming tree in which a proper number of backup peers are placed according to its reliability requirement. The reliable streaming tree reduces the reconnection delay, occurred in the case of a normal and/or abnormal peer leave, so as to minimize the loss of streaming data. In the proposed P2P streaming method, the join delay of a peer called startup delay is also substantially reduced because the bandwidth and end-to-end delay information of every peer kept in a distributed way allows the target peer for a joining peer to be able to be quickly determined. Moreover, the proposed method's peer admission control mechanism based on the bandwidth and end-to-end delay enables the delay-bounded streaming services to be provided for its corresponding applications.