• Title/Summary/Keyword: 인코넬 600

Search Result 38, Processing Time 0.023 seconds

Shear Strength of lnconel Tube Welded with Pulsed Nd:YAG Laser (펄스형 Nd:YAG레이저로 용접된 Inconel Tube의 전단강도)

  • Chang, W.;Kim, J. D.;Chung, J. M.;Kim, C. J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.125-128
    • /
    • 1995
  • The remote sleeve repair-welding technology using the pulsed Nd:YAG laser for increasing the lifetime of the steam generator tube in the nuclear power plant has been developed. The laser welding has many advantages on deep penetration depth and narrow heat affect zone(HAZ). The inconel 600 tube and inconel 690 sleeve used high temperature and high pressure service have been welded as round lap welds. It is found that the relation between the connection width and welding parameters. It is found that the shear strength in proportion to the connection width by conducting tensile-shear tests.

  • PDF

The Effects of Heat Treatment on Intergranular Carbide Precipitations and Intergranular Stress Corrosion Cracking of Inconel alloy (인코넬 합금의 열처리에 따른 입계 탄화물 석출 및 입계응력부식 거동)

  • Maeng, Wan-Young;Nam, Tae-Woon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.10 no.4
    • /
    • pp.219-231
    • /
    • 1997
  • Inconel alloys used as nuclear power plant components have experienced intergranular stress corrosion cracking problems inspite of their good corrosion characteristics. In order to investigate the effects of heat treatments on carbide precipitation and intergranular stress corrosion cracking(IGSCC) in Inconel alloys, DSC(Differential Scanning Calorimeter), TEM, EDXS and static potential corrosion tests were carried out. Thermal treatment at $750^{\circ}C$ for 15hours in Inconel alloys increased the density of intergranular carbide. The carbides are mainly $Cr_7C_3$ in Inconel 600, and $Cr_{23}C_6$ in Inconel 690. The Cr depletion around grain boundary is not crucial factor on IGSCC. The carbides in grain boundary play an important role as acting dislocation source, and as decreasing stress around growing crack.

  • PDF

The Design Optimization of Preventive Measure Against APR1400 Steam Generator Tube Fretting Wear (신형경수로 증기발생기 마모손상 억제를 위한 설계최적화)

  • Lim, Hyuk-Soon;Park, Young-Sheop;Lee, Kwang-Han;Lee, Seok-Ho;Chung, Dae-Yul
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2047-2052
    • /
    • 2004
  • Inconel-600 alloy has been used as steam generator tube material for current pressurized water reactors (PWRs). The long-term operation of steam generators showed that the use of this material induced localized corrosion damages and increased tube wear of steam generator. To protect these problems, steam generator tube material is being changed to Inconel-690 alloy. Based on the current trend, we have chosen Inconel 690 as the Advanced Power Reactor 1400 (APR1400) steam generator(SG) tube material and performed the design optimization of preventive measure against tube fretting wear for the APR1400 steam generator. In this paper, we examined the technical consideration in this modification : the selection of material, wear characteristics, effect of the Egg-crate Flow Distribution Plate installation, and effect analysis of vertical strip installation.

  • PDF

Welding Characteristics of Inconel Plate Using Pulsed Nd : YAG Laser Beam (펄스형 Nd:YAG 레이저빔을 이용한 인코넬 판재의 용접 특성)

  • 변진귀;박광수;한원진;심상한
    • Laser Solutions
    • /
    • v.3 no.1
    • /
    • pp.12-20
    • /
    • 2000
  • The nuclear steam generators are subjected to corrosion environmental condition during operation that can result in stress corrosion in the tube wall. If any tube wall degradation is recognized, the tube must be repaired by plugging or sleeving. For the sleeving repair, Nd : YAG laser welded sleeving technology is one of the most promising when considering radioactive working conditions in the nuclear power plant. In this paper, the laser welding characteristics of steam generator tube and sleeve materials are investigated. The effects of average laser power, laser energy, welding speed, pulse duration and frequency are evaluated. Based on these results, Nd : YAG laser welded sleeving repair was applied to the degraded steam generator tubes in real environment.

  • PDF

Effects of Laser Source Geometry on Laser Shock Peening Residual Stress (레이저 광원 형상이 레이저 충격 피닝 잔류응력에 미치는 영향)

  • Kim, Ju-Hee;Kim, Yun-Jae;Kim, Joung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.6
    • /
    • pp.609-615
    • /
    • 2012
  • In LSP (laser shock peening) treatment, the laser source geometries when the laser beam strikes the metal target area are diverse. The laser spot geometry affects the residual stress field beneath the treated surface of the metallic materials, which determines the characteristics of the pressure pulse. In this paper, detailed finite-element (FE) simulations on laser shock peening have been conducted in order to predict the magnitude and of the residual stresses and the depth affected in Inconel alloy 600 steel. The residual stress results are compared for circular, rectangular, and elliptical laser spot geometries. It is found that a circular spot can produce the maximum compressive residual stresses near the surface but generates tensile residual stresses at the center of the laser spot. In the depth direction, an elliptical laser spot produces the maximum compressive residual stresses. Circular and elliptical spots plastically affect the alloy to higher depths than a rectangular spot.

A Study on Real-Time Defect Detection Using Ultrasound Excited Thermography (초음파 서모그라피를 이용한 실시간 결함 검출에 대한 연구)

  • Cho, Jai-Wan;Seo, Yong-Chil;Jung, Seung-Ho;Jung, Hyun-Kyu;Kim, Seung-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.4
    • /
    • pp.211-219
    • /
    • 2006
  • The UET(ultrasound excited thermography) for the ,eat-time diagnostics of the object employs an infrared camera to image defects of the surface and subsurface which are locally heated using high-frequency putted ultrasonic excitation. The dissipation of high-power ultrasonic energy around the feces of the defects causes an increase In temperature. The defect's image appears as a hot spot (bright IR source) within a dark background field. The UET for nondestructive diagnostic and evaluation is based on the image analysis of the hot spot as a local response to ultrasonic excited heat deposition. In this paper the applicability of VET for fast imaging of defect is described. The ultrasonic energy is injected into the sample through a transducer in the vertical and horizontal directions respectively. The voltage applied to the transducer is measured by digital oscilloscope, and the waveform are compared. Measurements were performed on four kinds of materials: SUS fatigue crack specimen(thickness 14mm), PCB plate(1.8 mm), CFRP plate(3 mm) and Inconel 600 plate (1 mm). A high power ultrasonic energy with pulse durations of 250ms Is injected into the samples in the horizontal and vertical directions respectively The obtained experimental result reveals that the dissipation loss of the ultrasonic energy In the vertical injection is less than that in the horizontal direction. In the cafe or PCB, CFRP, the size of hot spot in the vortical injection if larger than that in horizontal direction. Duration time of the hot spot in the vertical direction is three times as long as that in the horizontal direction. In the case of Inconel 600 plate and SUS sample, the hot spot in the horizontal injection was detected faster than that in the vertical direction

Friction and Wear of Inconel 690 for Steam Generator Tube in Fretting (증기발생기 세관용 Inconel 690 의 프레팅 마찰 및 마멸특성)

  • Lee, Young-Ze;Lim, Min-Kyu;Oh, Se-Doo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.3
    • /
    • pp.432-439
    • /
    • 2003
  • Inconel 690 for nuclear steam generator tube has more Chromium than the conventionally used Inconel 600 in order to increase the corrosion resistance. To evaluate the tribological characteristics of Inconel 690 under fretting condition the fretting tests were carried out in air and elevated temperature water. Fretting tests of the cross-cylinder type were done under various vibrating amplitudes and applied normal loads in order to measure the friction forces and wear volumes. From the results of fretting wear tests. the wear of Inconel 690 can be predictable using the work rate model. The amounts of friction forces were proportional to relative movement between two fretting surfaces. The friction coefficients were decreased as increasing the normal loads and deceasing the vibrating amplitudes. Depending on fretting environment, distinctively different wear mechanisms and often drastically different wear rates can occur It was found that the fretting wearfactors in air and water at 2$0^{\circ}C$, 5$0^{\circ}C$, and 8$0^{\circ}C$ were 7.38 $\times$ $10^{-13}$$Pa^{-1}$, 2.12 $\times$$10^{-13}$$Pa^{-1}$, 3.34$\times$$10^{-13}$$Pa^{-1}$and 5.21$\times$$10^{-13}$$Pa^{-1}$, respectively flexibility to model response data with multiple local extreme. In this study, metamodeling techniques are adopted to carry out the shape optimization of a funnel of Cathode Ray Tube, which finds the shape minimizing the local maximum principal stress. Optimum designs using two metamodels are compared and proper metamodel is recommended based on this research.

NDT of a Nickel Coated Inconel Specimen Using by the Complex Induced Current - Magnetic Flux Leakage Method and Linearly Integrated Hall Sensor Array (복합 유도전류-누설자속법과 고밀도 홀센서배열에 의한 니켈 코팅 인코넬 시험편의 비파괴검사)

  • Jun, Jong-Woo;Lee, Jin-Yi;Park, Duk-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.5
    • /
    • pp.375-382
    • /
    • 2007
  • Nondestructive testing (NDT) by using the electromagnetic methods are useful for detecting cracks on the surface and subsurface of the metal. However, when the material contains both ferromagnetic and paramagnetic materials, it is difficult for NDT to detect and analyze cracks using this method. In addition the existence of a partial ferromagnetic material can be incorrectly characterized as a crack in the several cases. On the other hand a large crack has sometimes been misunderstood as a partially magnetized region. Inconel 600 is an important material in atomic energy plant. A nickel film is coated when a crack a appears on an Inconel substrate. Cracks are difficult to detect on the combined material of an Inconel substrate with a nickel film, which are paramagnetic and ferromagnetic material respectively. In this paper, a scan type magnetic camera, which uses a complex induced current-magnetic flux leakage (CIC-MFL) method as a magnetic source and a linearly integrated Hall sensor array (LIHaS) on a wafer as the magnetic sensors, was examined for its ability to detect cracks on the combined material. The evaluation probability of a crack is discussed. In addition the detection probability of the minimum depth was reported.