정보 검색은 다수 자료에서 사용자가 원하는 부분을 찾는 과정을 의미한다. 일반적으로 대규모 자료 집합의 관리를 위해서는 데이터베이스가 사용되는데 인터넷과 같은 복잡한 문서구조들이 공존하는 환경에서는 한 번에 사용자가 원하는 문서를 정확히 찾아내는 것이 어렵기 때문에, 문서에 순위를 부여하여 사용자에게 제시하는 방법이 일반적으로 많이 사용된다. 본 논문에서는 자료에 포함되어 있는 단어들을 단순히 검색하는 것 뿐만 아니라 단어들 간의 순서 및 인접성을 고려한 검색방법을 용어빈도-역문헌빈도 및 n-gram 기법을 응용하여 구현하였다. 그 결과 19,000개 이상의 다수 문서 집합에서 73%의 정확율로 보다 정확한 검색이 가능하게 되었다.
래스터 지도에서 직선 또는 곡선과 중첩되어 있는 경우의 문자는 추출하기가 쉽지 않다. 따라서 본 논문에서는 고립되어 있는 문자뿐만 아니라 문자이외의 요소와 중첩되어 있는 문자도 효과적으로 추출할수 있는 분할 정복(divide and conquer) 개념에 기반한 문자 추출방법을 제시한다. 이를 위해 먼저 이미지의 연결 요소로부터 볼록다각형(convex hull)을 생성한다. 그리고 이 다각형이 충분한게 문자영역만을 포함할때가지 볼록 다각형을 이등분하면서 가장 긴 선분(투사 선분)을 기준으로 두 영역으로 분할한다. 다음으로 문자를 추출하기 위해서 이 선분을 기준으로 연결 요소상의 픽셀의 밀집도를 계산하는 알고리즘(프로파일링)을 적용한다. 또한 지도상에서 추출된 개별적인 문자들을 의미있는 단어들로 묶기(grouping)한 새로운 알고리즘을 소개한다. 특히 지도상에 나타나는 문자의 종류는 매우 다양하고 또한 이 문자들이 놓여있는 방향 역시 일정하지 않기 때문에 이러한 단어를 찾는 kd법은 쉽지 않다. 이를 위해 본 논문에서는 3차원 인접 그래프(3-D neighborhood graph)G를 소개한다. 이 그래프 G에서 각 노드는 하나의 분리된 문자를 나타내며 자신의 크기와 위치에 따라서 3차원 공간상에서 위치하게된다. 따라서, 크기가 큰 (작은)문자들은 보다 큰 (작은) z값을 가지고 되며 이 그래프 G에서 서로 인접한 노드들을 연결함으로써 지도상에 존재하는 서로 다른 종류의 문자 스트링을 추출할수 있다. 실험결과는 서로 다른 지도 이미지에 대해서 약 95% 이상의 단어 추출율을 보여준다.
최근 자연어 처리 분야에서 딥 러닝이 많이 사용되고 있다. 자연어 처리에서 딥 러닝의 성능 향상을 위해 단어의 표현이 중요하다. 단어 임베딩은 단어 표현을 인공 신경망을 이용해 다차원 벡터로 표현한다. 본 논문에서는 word2vec의 Skip-gram과 negative-sampling을 이용하여 단어 임베딩 학습을 한다. 단어 임베딩 학습 데이터로 한국어 어휘지도 UWordMap의 용언의 필수논항 의미 제약 정보를 이용하여 구성했으며 250,183개의 단어 사전을 구축해 학습한다. 실험 결과로는 의미 제약 정보를 이용한 단어 임베딩이 유사성을 가진 단어들이 인접해 있음을 보인다.
본 논문에서는 TextRank 알고리즘을 이용한 문서 범주화 방법에 대해 기술한다. TextRank 알고리즘은 그래프 기반의 순위화 알고리즘이다. 문서에서 나타나는 각각의 단어를 노드로, 단어들 사이의 동시출현성을 이용하여 간선을 만들면 문서로부터 그래프를 생성할 수 있다. TextRank 알고리즘을 이용하여 생성된 그래프로부터 중요도가 높은 단어를 선택하고, 그 단어와 인접한 단어를 묶어 하나의 자질로 사용하여 문서 분류를 수행하였다. 동시출현 자질(인접한 단어 쌍)은 단어 하나가 갖는 의미를 보다 명확하게 만들어주므로 문서 분류에 좋은 자질로 사용될 수 있을 것이라 가정하였다. 문서 분류기로는 지지 벡터 기계, 베이지언 분류기, 최대 엔트로피 모델, k-NN 분류기 등을 사용하였다. 20 Newsgroups 문서 집합을 사용한 실험에서 모든 분류기에서 제안된 방법을 사용했을 때, 문서 분류 성능이 향상된 결과를 확인할 수 있었다.
트위터와 페이스북 등의 SNS(Social Network Service)는 일반 대중의 관심사나 트렌드 등의 이슈를 탐지하기 좋은 지식원이다. 본 논문에서는 검색 질의어에 관련된 이슈나 화제를 질의어에 대한 연관 어휘로 보고, 이를 트위터에서 추출하기 위한 방법을 제안한다. 제안하는 방법에서는 질의어와 연관성이 높은 단어는 질의어와 가까운 위치에서 자주 발생한다고 가정하고, 단어 간 거리에 반비례하고 공기 빈도에 비례하는 단어 간 인접도의 합으로 단어간 연관도를 구한다. 구해진 연관도 값이 임계치를 넘는 어휘를 연관 어휘로 보고 네트워크의 형태로 관련 이슈를 제시한다. 제안한 방법에서는 네트워크의 특성을 분석하여 복합어를 손쉽게 탐지할 수 있다.
단위성 의존명사는 수나 분량 따위를 나타내는 의존명사로 혼자 사용할 수 없으며 수사나 수관형사와 함께 사용하는 의존명사이다. 단위성 의존명사가 2가지 이상인 동형이의어의 경우 기존의 인접 어절을 이용한 동형이의어 분별 모델에서는 동형이의어 분별에 어려움이 있다. 본 논문에서는 단위성 의존명사 분별을 위해 단어 임베딩을 사용했으며 총 115,767개의 단어를 벡터로 표현하였으며 분별할 의존명사 주변에 등장한 명사들과의 유사도를 계산하여 단위성 의존명사를 분별하였다. 단어 임베딩을 이용한 단위성 의존명사 분별이 효과가 있음을 보았다.
단위성 의존명사는 수나 분량 따위를 나타내는 의존명사로 혼자 사용할 수 없으며 수사나 수관형사와 함께 사용하는 의존명사이다. 단위성 의존명사가 2가지 이상인 동형이의어의 경우 기존의 인접 어절을 이용한 동형이의어 분별 모델에서는 동형이의어 분별에 어려움이 있다. 본 논문에서는 단위성 의존명사 분별을 위해 단어 임베딩을 사용했으며 총 115,767개의 단어를 벡터로 표현하였으며 분별할 의존명사 주변에 등장한 명사들과의 유사도를 계산하여 단위성 의존명사를 분별하였다. 단어 임베딩을 이용한 단위성 의존명사 분별이 효과가 있음을 보았다.
일본어와 한국어는 문법적으로 많은 유사점을 가지고 있다. 이러한 유사점을 잘 이용한다면 일한 기계번역 시스템에서 구문해석이나 의미해석의 상당한 부분을 생략할 수 있다. 몇 년 전부터 우리는 유사성을 이용하여 번역율을 높이는 방법으로 번역테이블을 이용한 일한기계번역 시스템을 연구해왔다. 그러나 이 시스템은 활용어미의 번역, 다의성 단어의 처리 등 및 가지 문제점을 가지고 있었다. 본 논문에서는 번역데이블을 이용하는 시스템을 개선하여 이웃하는 단어들과의 관계 정보를 이용한 일한 기계번역 시스템을 제안한다. 현재 시스템의 문제점들을 해결하기 위하여 우선 조사, 조동사의 접속정보를 최대한 이용한다. 또한, 번역 테이블을 엔트리테이블과 접속정보 테이블로 나누어 설계하여 번역의 효율을 높인다. 즉, 하나의 역어만 가지는 단어인 경우, 우리는 일한 직접 대응 방법을 이용하여 바로 번역하고 2개 이상의 역어로 번역되어야 할 경우만 접속 정보 값을 평가하여 가장 가능성이 높은 번역어를 선택하도록 한다.
이 연구에서는 프로파일링 분석과 동시출현단어 분석을 이용해 인접 학문과의 연관성을 바탕으로 한국어교육학의 정체성을 분석하고자 하였다. 먼저, 한국어교육학, 국어교육학, 국어학 학술지의 논문에서 추출한 주제어를 기반으로 저널 프로파일링 분석을 수행하였고 그 결과 한국어교육학 분야의 학술지들이 하나의 독립된 군집을 형성하는 것으로 나타났다. 그리고 학문 분야 프로파일링 분석과 동시출현단어 분석을 이용해 학문 분야 간 관계를 분석한 결과 한국어교육학이 국어학보다 국어교육학과 더 큰 유사성을 가지는 것으로 나타났다. 마지막으로, 동시출현단어 분석을 통해 세 학문 분야의 지적 구조를 비교 분석하였다. 이를 통해 한국어교육학에서만 출현한 주제들을 확인함으로써 인접학문들과의 관계 속에서 한국어교육학이 드러내는 정체성을 파악할 수 있었다.
일본어와 한국어는 문법적으로 많은 유사점을 가지고 있다. 이러한 유사점을 잘 이용한다면 일한 기계번역 시스템에서 구문해석이나 의미해석의 상당한 부분을 생략할 수 있다. 몇 년 전부터 우리는 유사성을 이용하여 번역율을 높이는 방법으로 번역테이블을 이용한 일한기계번역 시스템을 연구해 왔다. 그러나 이 시스템은 활용어미의 번역, 다의성 단어의 처리 등 몇 가지 문제점을 가지고 있었다. 본 논문에서는 번역테이블을 이용하는 시스템을 개선하여 이웃 하는 단어들과의 관계 정보를 이용한 일한 기계번역 시스템을 제안한다. 현재 시스템의 문제점들을 해결하기 위하여 우선 조사, 조동사의 접속 정보를 최대한 이용한다. 또한, 번역 테이블을 엔트리테이블과 접속정보 테이블로 나누어 설계하여 번역의 효율을 높인다. 즉, 하나의 역어만 가지는 단어인 경우, 우리는 일한 직접 대응 방법을 이용하여 바로 번역하고 2개 이상의 역어로 번역되어야 할 경우만 접속 정보 값을 평가하여 가장 가능성이 높은 번역어를 선택하도록 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.