• Title/Summary/Keyword: 인장 케이블

Search Result 66, Processing Time 0.026 seconds

The Effect of Angular Anisotropy in XLPE Insulation on Dielectric Strength (XLPE 케이블의 비등방성이 가지는 전기.기계적 특성)

  • Cho, Dae-Hee;Lee, Sang-Jin;Kim, Young-Ho;Park, Wan-Gi
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.432-435
    • /
    • 2003
  • 최근 초고압 케이블 절연체로 XLPE(가교 폴리에틸렌)이 널리 사용되어 지면서 XLPE의 여러 물리 화학적 특성에 따른 절연 성능에 관한 연구가 활발히 이루어지고 있다. 이러한 XLPE 절연층은 제조과정에서 압출과정을 거쳐 도체를 감싸게 되는데 이 과정에서 흐름 패턴으로 나타나는 비등방성(anisotropy)을 띠게된다. 본 논문에서는 초고압 XLPE 케이블에서 시계 방향으로 나타나는 비등방성(anisotropy)이 나타내는 기계-전기적 특성을 인장강도(tensile strength), 트리 개시전압 및 개시시간을 측정한 결과를 토대로 고찰해 보았으며, 이러한 비등방성이 초고압 XLPE 케이블의 절연 성능에 영향을 주는 인자로 고려되어야 함을 알 수 있었다.

  • PDF

Failure Analysis Model for Tensioned FRP Dowels (인장을 받는 FRP 다우일의 파괴 해석 모델)

  • 박상렬
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.2
    • /
    • pp.137-146
    • /
    • 1998
  • 본 연구에서는 콘크리트 속에서 인장과 전단을 받는 FRP 다우얼의 거동과 파괴를 예측할 수 잇는 수리적인 파괴 해석 모델을 개발하였다. 다우얼 파괴해석 모델은 다우얼 작용과 파괴기준에 대한 두 개의 하위 모델로 구성되어 있는데 이들을 수정, 결합하여 만들어졌다. 다우얼 작용에 대한 모델로는 BEF 모델을 기초로 하여 두가지의 지수를 새로이 정의, 사용하였는데 하나는 콘크리트지지 강성을 변화시키기 위한 변위 정도 지수이고 다른 하나는 긴장된 케이블의 반력을 고려하기 위한 인장 지수이다. 인장과 전단이 작용하는 FRP다우얼의파괴 모델로는 Tsai-Hill 파괴기준이 사용되었고 이 기준을 적용하기 위하여 파괴 계수를 정의하였다. 개발된 파괴 해석 모델은 긴장된 FRP다우얼의 극한 전단력과 극한 변위를 예측하는데 사용하였고, 해석결과는 여러 인장응력을 가진 FRP 다우얼의 시험결과와 비교하였다.

Precast Concrete Construction for Chounju Soccer Field (전주월드컵경기장 P.C 공사 시공사례)

  • 서수일
    • Magazine of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.86-88
    • /
    • 2002
  • 지붕과 4개 부분으로 나누어진 스탠드는 전주의 전통 토산품인 합죽선의 이미지를 형성화하여 모든 이들에게 열려 있는 공간이라는 개념과 세계로 비상하는 전주시의 의지를 나타낸다. 부채 모양으로 펄쳐진 지붕을 케이블로 지지하는 4개의 대형 기둥은 그 옛날 마을의 안녕과 수호, 풍년을 기원하여 마을 어귀에 세웠던 솟대를 이미지화 한 것이며, 인장 케이블은 우리 전통 악기인 가야금의 12현을 상징화하여 전주시가 소리의 고장임을 은유적으로 표현하였다.(중략)

Application of Acoustic Emission Technique for Bridge Cable Monitoring (교량 케이블 적용 강연선 모니터링을 위한 음향방출 기법 검토)

  • Kim, Ga-Young;Seo, Dong-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.121-125
    • /
    • 2018
  • This paper presents the assessment of 7-wire strand monitoring using acoustic emission technique for bridges. 7-wire strand is widely used construction materials to provide additional tensile force to bridges. PSC (PreStressed Concrete) bridge and cable-stayed bridge are representatives for such cases. However, as the bridge aging progresses recently, corrosion problems of strand are emerging. For this reason, various NDT (Non-Destructive Test) methods for cable inspection are being studied and applied to the field. One of the NDT methods, acoustic emission technique, is known as an effective technique to detect cable damage and breakage. In this study, to evaluate the applicability of acoustic emission technique to bridges, acoustic emission signals according to damage of the strand were acquired and analyzed by tensile test. Moreover, The optimal AE sensor type was selected for field application. As a result, it is considered that the acoustic emission technique will be able to detect corrosion breakage and signs of rupture.

A Study on the Characteristics of Nonlinear Unstable Phenomenon According to the Shape Variation of Cable Domes (케이블 돔 구조물의 형태 변화에 따른 비선형 불안정 거동의 특성에 관한 연구)

  • Kim, Seung Deog;Back, In Seong;Kim, Hyung Seok
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.3 s.70
    • /
    • pp.345-353
    • /
    • 2004
  • One of the key issues in spatial structures with large spaces is how to carry the weight of the roof. This can be solved by the effective use of tension members. A cable dome structural system facilitates the construction of a large space structure. As external load increases, however, the cable dome structural system is put at risk due to global buckling. This study measures the shape of the Geiger and Flower-type cable dome by applying an initial stress. This unstable phenomenon is also examined using a perfectly shaped model and an imperfect model, which are both subjected to an axisymmetric load.

Estimation of Tension Forces of Stay Cables (인장 케이블의 장력 추정기법에 관한 연구)

  • Kim, Nam-Sik;Jeong, Woon;Seo, Ju-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.121-126
    • /
    • 2002
  • In a recent construction industry, cable supported structures such as a cable-stayed bridge or space stadium have been increasingly constructed. Generally the stay cables as a critical member should be adjusted to be satisfied with the design tension forces. In this purpose, a vibration method has been applied to estimate the tension forces exerted to the existing stay cables. In this study, cable vibration tests were carried out to estimate the cable tension forces comparing with theoretical and practical formulas. From the measured frequencies obtained from free vibration and impulsive tests, the accuracy of 1he estimated tension forces is confirmed according to use only the first single mode or higher multiple modes.

  • PDF

Vibration Reduction Effects of Stay Cable Due to Friction Damper (마찰댐퍼에 의한 사장 케이블의 진동저감 효과)

  • Kim, Hyung Ku;Yhim, Sung Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.54-61
    • /
    • 2013
  • Stay cable has a strong axial rigidity due to large initial tension and, on the other hand, it has a weak laterally flexural rigidity. Wind loads or traffic loads cause the cables to vibrate significantly and affect the mechanical properties and the performance of cables of cable-stayed bridge (CSB). Therefore, the development of vibration reduction design is an urgent task to control the vibration vulnerable long-span bridges. As Friction damper (FD) shows to reduce the amplitude and duration time of vibration of cable of CSB from measured date in field test, friction damper can be considered that it is effective device significantly to reduce the amplitude and duration time in vibration of cable of CSB under traffic load, wind load and so on. Vibration characteristics of cable can change according to manufacturing method and type of established form. Nevertheless, analysis method in this study can present the design of friction damper for vibration reduction of cable of cable-stayed bridge from now on.

An investigation on the mechanical properties of cable stitches in weft knitting (위편성 케이블 조직의 편성법에 따른 물성 평가)

  • Choi, Wonseok
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.20 no.4
    • /
    • pp.73-82
    • /
    • 2018
  • This research investigated the mechanical properties of the 4 different types of $3{\times}3$ cable stitches on weft knitted fabrics. The 4 kinds of cable-stitch fabrics were knitted under the same knitting conditions, then the mechanical properties, such as tensile strength, elongation, stiffness, etc. were measured according to the Korean Industrial Standards (KS K 0642). The knitting time for the sample produced by the knitting process 1 was the shortest among the 4 different types of samples. It means that the knitting process 1 would have benefits of higher productivity if there is no yarn breakage during the knitting of the cable stitches. In the test for tensile strength, the samples produced by knitting processes 3 and 4 have tensile values of approximately 8~11% higher than the sample produced by knitting process 1. The test for elongation also shows that the samples produced by knitting processes 3 and 4 have up to 18% higher elongation values than the sample produced by knitting process 1. On the other hand, the stiffness test showed no significant difference between the 4 samples. This study is expected to increase the competitiveness of the local knitting industry as a result of providing basic data on the mechanical properties of special knitted stitches, such as cable stitches.

Comparison of Performance of Restrainers of Steel Cables and Shape Memory Alloy Bars for Multiple-Span-Simply-Supported Bridges (다경간 단순지지 교량의 강케이블 및 형상기억합금 변위제어장치의 성능 비교)

  • Choi, Eun Soo;Kim, Lee Hyeon;Park, Joo Nam;Cho, Hyo Nam
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.587-597
    • /
    • 2007
  • Steel restrainer cables for multiple frame bridges in California in the United States have been shown to be effective in preventing unseating at internal hinges during the past several earthquakes. Consequently, the steel-cable-restrainer is being tested for applications on multiple-span-simply-supported (MSSS) bridges in the mid-American region. In addition, shape memory alloy (SMA) bars in tension are being studied for the same application, multiple frame bridges, the developed seismic forces are transferred to piers through the restrainers. However, in MSSS bridges, the seismic forces are transferred to abutments by the restrainers. Therefore, the abutment' behavior should also be investigated. In this study, we assessed the seismic performance of the three types of restrainers, such as steel restrainer cables, SMA in tension, and SMA in bending for an MSSS bridge from moderate to strong ground motion, bending test of an SMA bar was conducted and its analytical model was determined for this study. Nonlinear time history analyses were conducted to assess the seismic responses of the as-built and the retrofitted bridges. All three types of restrainers reduced the hinge opening and the SMA in tension was the most effective of the three devices in preventing the unseating, all restrainers produced damage on the abutment from the pulling action of the MSSS bridge due to strong ground motions, was found that the retrofit of the abutment in the pulling action is required in the installation of restrainers in MSSS bridges.