• Title/Summary/Keyword: 인장 변형률

Search Result 516, Processing Time 0.029 seconds

Evaluation of Soil Parameters Using Adaptive Management Technique (적응형 관리 기법을 이용한 지반 물성 값의 평가)

  • Koo, Bonwhee;Kim, Taesik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.2
    • /
    • pp.47-51
    • /
    • 2017
  • In this study, the optimization algorithm by inverse analysis that is the core of the adaptive management technique was adopted to update the soil engineering properties based on the ground response during the construction. Adaptive management technique is the framework wherein construction and design procedures are adjusted based on observations and measurements made as construction proceeds. To evaluate the performance of the adaptive management technique, the numerical simulation for the triaxial tests and the synthetic deep excavation were conducted with the Hardening Soil model. To effectively conduct the analysis, the effective parameters among the parameters employed in the model were selected based on the composite scaled sensitivity analysis. The results from the undrained triaxial tests performed with soft Chicago clays were used for the parameter calibration. The simulation for the synthetic deep excavation were conducted assuming that the soil engineering parameters obtained from the triaxial simulation represent the actual field condition. These values were used as the reference values. The observation for the synthetic deep excavation simulations was the horizontal displacement of the support wall that has the highest composite scaled sensitivity among the other possible observations. It was found that the horizontal displacement of the support wall with the various initial soil properties were converged to the reference displacement by using the adaptive management technique.

The Stress -Strain Behavior of Asan Marine Soil (아산만 해성토의 응력 -변형률 거동)

  • Hong, Chang-Su;Jeong, Sang-Seom;Kim, Su-Il
    • Geotechnical Engineering
    • /
    • v.12 no.5
    • /
    • pp.17-26
    • /
    • 1996
  • The undrained behavior of Asan marine soil was investigated by using an automated triaxial testing device. The stress-strain behavior at the preand postfailure state of marine soil under undrained compression and eatension conditions was compared with the behavior of pure silt, pure clay and the overall behavior of Asan marine soil was predicted with the modified Camflay model and the bounding surface model. The marine soil sampled in Asan bay area was clayey silts with 70oA silt-30% clay content and the testing samples were prepared in both undisturbed and remolded conditions. All samples are normally consolidated with 400 kPa of effective mean confining pressure and each sample is unloaded to 200, 100, 67 kPa, respectively. And then the shear test was performed with different confining pressure. According to experimental results, there exists an unique failure line whose slope is lower than silt's and higher than clay's. It is identified that the undrained shear strength of normally consolidated samples increases after crossing the phase transformation line because of volume dilation tendency which is not seen in clay. Overconsolidated samples show different soil behavior compared with pure silt due to its tendency of change in volume. It is also found that the overall behavior of Asan marine soil cannot be predicted precisely with the modified Cam-clay model and the bounding surface model.

  • PDF

A Study on Seismic Performance for CFT Square Column-to-Beam Connections Reinforced with Asymmetric Lower Diaphragms (이형 하부다이아프램으로 보강된 각형 CFT 기둥-보 접합부의 내진성능에 관한 연구)

  • Choi, Sung Mo;Yun, Yeo Sang;Kim, Yo Suk;Kim, Jin Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.5 s.66
    • /
    • pp.579-589
    • /
    • 2003
  • Most beam-to-column connections are symmetrically reinforced because of the reverse action caused by earthquakes. However, in weak-earthquake regions like Korea, asymmetrically reinforced connections could be used. In particular, the connections between concrete-filled tube (CFT) column and H-shape beam could be applied using a simplified lower diaphragm. The tensile capacity or Combined Cross Diaphragm for upper reinforcing was tested using a simple tension test. Four types for lower reinforcing combined Cross, none, horizontal T-bar, and vertical plate were tested using the ANSI/AISC SSPEC 2002 loading program. Horizontal T-bar and stud bolts in vertical flat, bar transmit tensile stress from the beam's bottom flange to filled concrete. All test specimens satisfied 0.01 radian inelastic rotational requirement in ordinary moment frame of AISC seismic provision. According to the results of the parametric studies simplified lower diaphragms demonstrated outstanding strength, stiffness, and plastic deformation capacity which could lead to more sufficient seismic performance in the field.

The Comparison of Properties of ER and MR Fluids Using a Rotational Viscometer (회전식 점도측정기를 이용한 ER 및 MR유체의 특성 비교)

  • 이영록;전도영
    • The Korean Journal of Rheology
    • /
    • v.11 no.2
    • /
    • pp.73-81
    • /
    • 1999
  • The intention of this research is to give criteria of designing devices using ER fluids and MR fluids. The Properties of commercial ER fluids and MR fluids are compared using a rotational viscometer. The yield strength is compared upon changes of shear rate, temperature and applied fields. MR fluids seem less sensitive to temperature change than ER fluids. In cases of MR and ER fluid dampers, the time delay and damping force are measured in tension and compression mode when the applied field changes.

  • PDF

Stress-Strain Properties of Geosynthetics by Confined Extension Tests (구속신장시험에 의한 토목섬유의 인장력-변형률거동 특성)

  • Bang, Yoon-Kyung;Jeon, Young-Dae;Lee, Jun-Dae
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.2
    • /
    • pp.52-57
    • /
    • 2002
  • In this study. stress-strain relationships were investigated by performing the confined extension tests for seven types of geosynthetics such as geotextiles, composite geosynthetics and geogrids. A comparison was made between unconfined and confined moduli for each geosynthetic material to quantify the soil confinement effect on stress-strain properties. A comparison was also made between the increase of moduli at the same strain level with the types of the geosynthetics to demonstrate the different stress-strain responses. Based on the result of the extension tests, the higher the confining stress, the larger the secant modulus of geosynthetics. The secant modulus at 5% strain is twice as much as that of 10% strain, especially there is a noticeable increasing of secant modulus for the two nonwoven geotextiles.

Boundary Element Analysis of Stress Intensity Factor for Interface Edge Crack in A Unidirectional Composite (단일방향 복합재료의 공유면에 존재하는 모서리 균열의 경계요소해석)

  • 이상순;김정규
    • Computational Structural Engineering
    • /
    • v.9 no.1
    • /
    • pp.77-83
    • /
    • 1996
  • The overall stress intensity factor for edge crack located at the interface between fiber and matrix of a unidirectional graphite/epoxy laminate model subjected to a transverse tensile strain have been computed using the boundary element method. Such crack might be generated due to a stress singularity in the vicinity of the free surface. The amplitude of complex stress intensity factor has the constant value at large crack lengths.

  • PDF

Prediction of Drying Shrinkage Behavior of Half PC Slab (Half PC slab의 건조수축 거동 예측)

  • Seo, Tae-Seok;Choi, Hoon-Jae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.7-8
    • /
    • 2016
  • The use of half PC slab is increasing to shorten construction period. Because the drying shrinkage of topping concrete is restrained by PC slab, the tensile stress is generated at the topping concrete and the cracks can be occurred at the topping concrete due to drying shrinkage. Therefore, it is important to predict the tensile strain of half PC slab due to drying shrinkage to improve the quality of half PC slab. However, there is no studies on prediction of shrinkage behavior of half PC slab yet. Therefore, in this study, half PC slab was made, and the predictability of tensile strain generated at half PC slab due to drying shrinkage was investigated. The step by step method considering creep was used to estimate the tensile strain of half PC slab. In result, good agreement was obtained between the analytical and experimental values.

  • PDF

Damage Assessment of Buried Pipelines due to Tunneling-Induced Ground Movements (터널시공에 따른 지반거동에 의한 지중매설관 손상 평가)

  • 유충식
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.4
    • /
    • pp.71-86
    • /
    • 2001
  • 본 고에서는 도심지 터널의 과학적인 설계/시공을 위한 요소기술 확보의 일환으로 기존의 연구자들이 제시한 손상평가 기법을 토대로 터널굴착에 따른 지중매설관 손상여부의 예비평가를 위한 평가기법을 제시하였다. 제시된 기법을 토대로 다양한 경우에 대한 매개변수 연구를 수행한 결과 지반침하곡선의 경사 및 곡률 등 침하곡선의 제반특성에 기반을 둔 본 연구에서 개발된 손상평가기법의 평가결과는 변곡점의 위치에 많은 영향을 받는 것으로 나타났으며, 따라서 현장 특유의 지반특성 및 시공조건이 반영된 변곡점 산정식의 개발을 위한 지속적인 연구가 필요한 것으로 판단된다. 아울러서 터널심도가 터널직경의 2.5배 이하인 경우 손상도가 현저히 증가하며, 전반적으로 관의 재질이나 조인트의 형식에 관계없이 관체의 인장변형률이 손상여부를 결정짓는 인자인 것으로 나타났다. 본 연구에서 얻어진 결과를 종합하여 터널과 매설관의 상대적 위치 및 지반손실량에 따라 매설관의 손상정도를 정량적으로 평가할 수 있는 설계도표를 제시하였다.

  • PDF

Tensile Strain Characteristics of Critical Current in YBCO Coated Conductors (YBCO CC테이프 임계전류의 인장변형률 특성)

  • Shin, Hyung-Seop;Kim, Ki-Hyun;Oh, Sang-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.274-275
    • /
    • 2005
  • The tensile strain dependency of critical current in YBCO coated conductors was examined at 77K and in the self magnetic field. A commercially available YBCO sample with Cu stabilizer layer was supplied. There existed a peak in the relation between the Ie and tensile strain, and the reversible variation of $I_c$ with applied tensile strain was found. In the neutral axis Ni alloy RABiTS-$Y_2O_3$/YSZ/$CeO_2$ buffered YBCO tape, the $I_c$ recovered reversibly until the applied strain reached to about 0.5%, representing that a significant residual compressive strain induced during cooling to 77 K influenced the axial strain tolerance of YBCO conductors. To investigate the strain and stress influence on the $I_c$, the stress-strain characteristics of YBCO conductors measured at 77 K were discussed.

  • PDF

Techniques for Measuring Mechanical Properties of Polysilicon using an ISDG (ISDG를 이용한 다결정실리콘 기계적 물성값 측정법)

  • 오충석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.171-178
    • /
    • 2004
  • Techniques and procedures are presented for measuring mechanical properties on thin-film Polysilicon. Narrow platinum lines are deposited 250 ${\mu}{\textrm}{m}$ apart on tensile specimens that are 3.5 ${\mu}{\textrm}{m}$ thick and 600 ${\mu}{\textrm}{m}$ wide. Load is applied by a piezo-actuator and by hanging weights. Strain is measured by an ISDC at temperatures up to 500 $^{\circ}C$. Measurements of the elastic modulus with jig modifications, loading speed and temperature change are presented first. And then, the preliminary data for the coefficient of thermal expansion and creep behavior are presented as a reference.