• Title/Summary/Keyword: 인장철근

Search Result 495, Processing Time 0.029 seconds

Evaluation and Modification of Tensile Properties of Carbon Fiber Reinforced Polymer(CFRP) as Brittle Material with Probability Distribution (확률분포를 이용한 취성재료 특성의 탄소섬유보강폴리머 인장물성평가 및 보정)

  • Kim, Yun-Gon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.17-24
    • /
    • 2019
  • Carbon Fiber Reinforced Polymers(CFRP) has widely utilized as a material for rehabilitation because of its light-weight, deformability and workability. Because CFRP is brittle material whereas steel is ductile, it is inappropriate to apply conventional design approach for steel reinforcement. For ductile material, the behavior of combined elements is on average of that of unit element due to the stress redistribution between elements after yielding. Therefore, the mean value of the stress of combined elements is equal to that of unit element and the standard variation is smaller. Therefore, although the design value can increase, it is used as constant value because it is conservative and practical approach. However, for brittle material, the behavior of combined elements is governed by the weaker element because no stress redistribution is expected. Therefore, both the mean value and standard variation of the stress of combined elements decreases. For this reason, the design value would decrease as the number of element increases although it is eventually converged. In this paper, in brittle material, it is verified that the combination of unit element with normal distribution results in combined element with weibull distribution, so the modifying equation of mechanical properties is proposed with respect to the area load applied.

Development of Tension Stiffening Models for Steel Fibrous High Strength Reinforced Concrete Members (강섬유보강 고강도 철근콘크리트 부재의 인장강성모델 개발)

  • 홍창우;윤경구;이정호;박제선
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.6
    • /
    • pp.35-46
    • /
    • 1999
  • The steel fiber reinforced concrete may affect substantially to the tension stiffening at post cracking behavior. Even if several tension stiffening models exist, they are for plain and normal strength concrete. Thus, the development of tension stiffening models for steel fibrous high strength RC members are necessary at this time when steel fiber reinforced and high strength concretes are common in use. This paper presents tension stiffening effects from experimental results on direct tension members with the main variables such as concrete strength, concrete cover depth, steel fiber quantity and aspect ratio. The comparison of existing models against experimental results indicated that linear reduced model closely estimated the test results at normal strength level but overestimated at high strength level. Discontinuity stress reduced model underestimated at both strength levels. These existing models were not valid enough in applying at steel fibrous high strength concrete because they couldn't consider the concrete strength nor section area. Thus, new tension stiffening models for high strength and steel fiber reinforced concrete were proposed from the analysis of experimental results, considering concrete strength, rebar diameter, concrete cover depth, and steel fiber reinforcement.

Cracking Analysis of Reinforced Concrete Tension Members with Concrete Fracture Mechanics (콘크리트 파괴역학을 이용한 철근콘크리트 인장부재의 균열성장 해석)

  • 홍창우;윤경구;양성철
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.1
    • /
    • pp.3-12
    • /
    • 2000
  • A fracture energy concept proposed by Ouyang and Shah's fracture mechanics approach was used to predict cracking of reinforced concrete members subjected to tension. In this approach, fracture properties in plain concrete which incorporate the presence of the fracture process zone are first determined from the generalized size effect method, then fracture energy required for crack propagation with the same dimension and material properties are evaluated using an R-curve. Subsequently taking into account the material properties in Ouyang and Shah's approach, a theoretical analysis to predict the mechanical behavior of reinforced concrete members subjected to tension was performed and compared to observed experimental results. It is seen that the predicted average crack spacing curves agree well with the experimental results, whereas the analytical method seems to predict lower values for this study. The analytical approach predicts well responses of stress-strain curves before and after the first crack is formed. It is concluded from this study that a fracture energy concept based on the R-curve and the generalized size effect method is a rational approach to predict cracking of reinforced concrete members subjected to tension.

Facture Behavior Analysis of Box Culvert Specimen Using Non-local Damage Model (비국소 손상모델을 이용한 전력구 모형 실험체의 파괴거동 해석)

  • Kwon, Yong-Gil;Woo, Sang-Kyun;Han, Sang-Hoon;Song, Young-Cheul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.225-228
    • /
    • 2008
  • In case of nonlinear analysis for reinforced concrete structure, the characteristics of the failure, which are depend on loading conditions, such as tension splitting, compression crushing and shear distortion should be considered. On the analytical evaluation for the failure behavior of these, the finite element techniques is the most widely used. After the maximum load, however, an analytical results by finite element technique are depending on the size of the element. In this study, integral nonlocal model which is one of those study for overcoming the element sensitivity and dependancy, used for the failure analysis of box culvert specimen. Comparing on the experimental and analytical results, validity and reliability of integral nonlocal model are investigate.

  • PDF

Statistical Characteristic of Mechanical Properties of Concrete (콘크리트 역학적 성질의 통계적 특성)

  • Kim, Jee-Sang;Shin, Jeong-Ho;Choi, Yeon-Wang;Moon, Jea-Heum;Kim, Joo-Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.657-660
    • /
    • 2008
  • The mechanical properties of concrete such as compressive strength, tensile strength, and modulus of elasticity, are considerably influenced by various factors including locality. The material property prescriptions in national concrete design codes should reflect them. In Korea, they have not been studied systematically yet. A new performance-based design code is being prepared in Korea as a government-supported project and it has a plan to make new material prescriptions adopting domestic research results. As a starting point for the research on material properties, the statistical characteristics of mechanical properties of concrete are studied. In this paper, a probabilistic model of compressive strength, relationship between compressive strength and splitting tensile strength and compressive strength and elastic modulus are proposed based on experimental data.

  • PDF

Ultimate Analysis of Prestressed Concrete Cable-Stayed Bridges (프리스트레스트 콘크리트 사장교의 극한해석)

  • Lee, Jae Seok;Kang, Young Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.85-98
    • /
    • 1993
  • A method of analysis for the material and geometric nonlinear analysis of planar prestressed concrete cable-stayed bridges including the time-dependent effects due to load history, creep, shrinkage, aging of concrete and relaxation of prestress is described. The analysis procedure, based on the finite element method, is capable of predicting the response of these structures through elastic, cracking, inelastic and ultimate ranges. The nonlinear formulation for the description of motion is based on the updated Lagrangian approach. To account for the material nonlinearity, nonlinear stress-strain relationship and cracking of concrete, nonlinear stress-strain relationships of reinforcing steel, prestressing steel, and cable, including load reversal are given. Results from a numerical examples on ultimate analyses of cable-stayed bridges are presented to illustrate the analysis method.

  • PDF

An Experimental Study on the Mechanical Properties of No-Fines Concrete (No-Fines Concrete의 역학적 특성에 관한 실험적 연구)

  • 홍건호;정일영
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.3
    • /
    • pp.190-200
    • /
    • 1994
  • The purpose of this research is to examine experimentally the mechanical properties and economics of No-fines concrete for its application to the low-rise housing construction. Basic mechanical properties of No fines concrete are studied by measuring of compressive, tensile strength and stress-strain relationship, and economics of it is compared with other materials in unit cost and wall construction cost. From the test results, it can be concluded that No-fines concrete has advantages of good workability, light weight and lower construction cost, even though it has lower strength and modulus of elasticity than normal conc:rt:te does.

Microstructure, Hardness and Tensile Properties of 600 MPa-Grade High-Strength and Seismic Resistant Reinforcing Steels (600 MPa급 고강도 일반 및 내진 철근의 미세조직, 경도와 인장 특성)

  • Seo, Ha-Neul;Lee, Sang-In;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.27 no.9
    • /
    • pp.477-483
    • /
    • 2017
  • This present study deals with the microstructure and tensile properties of 600 MPa-grade high strength and seismic resistant reinforcing steels. The high strength reinforcing steel (SD 600) was fabricated by Tempcore processing, while the seismic resistant reinforcing steel (SD 600S) was air-cooled after hot-rolling treatment. The microstructure analysis results showed that the SD 600 steel specimen consisted of a tempered martensite and ferrite-pearlite structure after Tempcore processing, while the SD 600S steel specimen had a fully ferrite-pearlite structure. The room-temperature tensile test results indicate that, because of the enhanced solid solution and precipitation strengthening caused by relatively higher contents of C, Mn, Si and V in the SD 600S steel specimen, this specimen, with fully ferrite-pearlite structure, had yield and tensile strengths higher than those of the SD 600 specimen. On the other hand, the hardness of the SD 600 and SD 600S steel specimens changed in different ways according to location, dependent on the microstructure, ferrite grain size, and volume fraction.

An Experimental Study on Strengthening Performance of RC Slab used of Surface Bonded Method of GSP and CFRP Sheet (GSP와 CFRP 쉬트의 표면부착공법을 이용한 RC 슬래브의 보강성능 평가에 관한 실험적 연구)

  • Ahn, Ki-Man;Kim, Kwang-Soo;Park, Sun-Kyu;Lee, Young-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.6
    • /
    • pp.95-102
    • /
    • 2007
  • Recently, an improved capacity for RC bridges is required by their deterioration or necessary to carry traffic increase. Strengthening is known as a better way to improve capacity of bridges than reconstructing in terms of economy. The surface bonded method, which is normally used with FRP material, has some advantages related to conveninent application and time-save among other strengthening methods. FRP material is light and has high tensile strength compared to steel. Therefore, this paper presents how structural capacity strengthed with CFRP sheet and Glass fiber-Steel Plate (GSP) is improved.

Analysis of the Flexural Strength of Reinforced Concrete Beams Strengthened with Prestressed Carbon Fiber-Reinforced Polymer Plates (CFRP판으로 프리스트레싱 보강된 RC 보의 휨강도 해석)

  • Woo, Sang-Kyun;Hong, Ki-Nam;Han, Sang-Hoon;Song, Young-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.1
    • /
    • pp.181-192
    • /
    • 2007
  • The purpose of this study is to analyse and compare experimentally flexural behavior of RC beams strengthened with CFRP plates by different methods, and finally suggest the evaluation equations of flexural capacity of RC beams with the aim of application of prestressed CFRP strengthening. The experimental parameters are compressive strength, reinforcement ratio, prestressing level and strengthening methods. The non-prestressed specimens failed on account of separation of the plates from the beams due to premature de-bonding, while most of the prestressed specimens failed due to CFRP plate fracture. The evaluation equations of flexural capacity of RC beams is suggested and these equations have a good reliability in predicting flexural strength of RC beams.