• Title/Summary/Keyword: 인장철근

Search Result 495, Processing Time 0.022 seconds

Experimental Study on the Flexural Behavior of Inverted T-Shaped Steel·Concrete Composite Deck for Bridges (역T형강·콘크리트 합성바닥판의 휨거동에 관한 실험적 연구)

  • Kim, Sung Hoon;Park, Young Hoon;Lee, Seung Yong;Choi, Jun Hyeok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3A
    • /
    • pp.331-340
    • /
    • 2008
  • This study is to suggest the details of new concept of bridge deck. Experimental studies on the behavior of a inverted T-shaped steelconcrete composite deck were carried out. The part of inverted T-shaped steel is embedded in concrete. Reinforced concrete deck specimen and composite deck specimens were fabricated and static bending fracture tests were conducted. The ultimate strength and fracture strength of specimens were evaluated. The effects of shear hole crossing bars of composite deck were also analyzed. From the results of experiments, composite deck with shear hole crossing bar increased shear strength, and showed typical tensile failure. Ultimate strength and fracture strength of composite deck with shear hole crossing bar are higher than those of reinforced concrete deck. The displacement of composite deck is higher than that of reinforced concrete deck.

Anchorage Strength of High Strength Headed Bar Embedded Vertically on SFRC Members (SFRC 부재에 수직 배근된 고강도 확대머리철근의 정착강도)

  • Lee, Chang-Yong;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.148-156
    • /
    • 2020
  • The paper is a summary of the results of the basic pullout test which is conducted to evaluate the anchorage capacity of high strength headed bars that is mechanical anchored vertically on steel fiber reinforced concrete members. The main experimental parameters are volume fraction of steel fiber, concrete strength, anchorage length, yield strength of headed bars, and shear reinforcement bar. Both sides of covering depth of the specimen are planned to double the diameter of the headed bars. The hinged point is placed at the position of each 1.5𝑙dt and 0.7𝑙dt around the headed bars, and the headed bars are drawn directly. As a result of pullout test experiment, concrete fracture and steel tensile rupture appear by experimental parameters. The compressive strength of concrete is 2.7~5.4% higher than that of steel fiber with the same parameters, while the pullout strength is 20.9~63.1% higher than that of steel fiber without the same parameters, which is evaluated to contribute greatly to the improvement of the anchorage capacity. The reinforcements of shear reinforcements parallel to the headed bars increased 1.7~7.7% pullout strength for steel fiber reinforced concrete, but the effect on the improvement of the anchorage capacity was not significant considering the increase in concrete strength. As with the details of this experiment, it is believed that the design formula for the anchorage length of KCI2017and KCI2012 are suitable for the mechanical development design of SD600 head bar that is perpendicular to the steel fiber reinforced concrete members.

An Experimental Study for Flexural Characteristic of Concrete Beam Reinforced with FRP Rebar under Static and Fatigue (FRP 보강근을 사용한 콘크리트 휨부재의 정적 및 피로특성에 대한 실험적 연구)

  • Sim, Jong-Sung;Park, Sung-Jae;Kang, Tae-Sung;Kwon, Dong-Wook;Lee, Ki-Hong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.313-316
    • /
    • 2008
  • Corrosion of steel in the reinforced concrete structures is one of the main reason of degradation. It causes that lifetime of structures is shortened and maintenance cost is increased. And it also causes degradation of structures like bridges which are under repeated load. So, many research have been performed about FRP rebar. But there are few research about FRP rebar under fatigue. This study is to examine flexural characteristic of concrete beam reinforced with FRP(CFRP, GFRP) rebar under static and fatigue for considering the application. The specimens that used in this study are designed by ACI 440.1R-06 and reinforced with CFRP(CR) or GFRP(GR) overly. In the result of static bending test, all specimens were failed at compression phase. In fatigue test, the fatigue stress level was 60%, 70% or 80% of the static bending strength. Most of the specimens seemed to be compressive failure, but CR-60 and CR-70 specimens were failed with rupturing of tension bar.

  • PDF

Evaluation of Shear Design Provisions for Reinforced Concrete Beams and Prestressed Concrete Beams (철근콘크리트 보와 프리스트레스트 콘크리트 보의 전단설계기준에 대한 고찰)

  • Kim Kang-Su;Kim Sang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.717-726
    • /
    • 2005
  • Shear test data have been extracted from previous experimental research and compiled into a database that may be the largest ever made. In this paper, the shear database (SDB) was used for evaluating shear design provisions for both reinforced concrete (RC) beams and prestressd concrete (PSC) beams. A discussion on the use of the results of this evaluation related to calibration and strength reduction factor for the shear design provisions was also provided. It was observed that the shear design provisions did not provide good predictions for RC members and gave very poor predictions especially for RC members without shear reinforcement. On the other hand, the limit on shear strength contributed by transverse reinforcement was observed to be lower than necessary. The shear design provisions gave very unconservative results for the large RC members (d>700mm) without shear reinforcement having light amount of longitudinal reinforcement $(\rho_w<1.0\%)$. However, for PSC members the shear design provisions gave a good estimation of ultimate shear strength with a reasonable margin of safety. Despite of a large difference of accuracy in prediction of shear strength for RC members and PSC members, the shear design provisions used a same shear strength reduction factor for these members. As a result, the shear design provisions did not provide a uniform factor of safety against shear failure for different types of members.

Lap Details Using Headed Bars and Hooked Bars for Flexural Members with Different Depths (확대머리 철근과 갈고리 철근을 이용한 단차가 있는 휨부재의 겹침이음상세)

  • Lee, Kyu-Seon;Jin, Se-Hoon;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.144-152
    • /
    • 2016
  • This paper focuses on the experimental study for investigating the performance for lap splice of hooked or headed reinforcement in beam with different depths. In the experiment, seven specimens, with its variables as the lap length of headed or hooked bar, the existence of stirrups, etc., was manufactured. Bending test was conducted. Lap strengths by test were compared with the theoretical model based on KCI2012. The result showed that the cracks at failure mode occurred along the axial direction to a headed bar. The initial stiffness and the stiffness after initial crack were similar for all specimens. For HS series specimens without stirrups, a 25% increase in lap length was increased 11.8~18.1% maximum strengths. For HH series specimens without stirrups, a increase in lap length did not affect the maximum strengths because of the pryout failure of headed bar. For HS series specimens, the theoretical lap strengths based on KCI2012 considering the B grade lap and the reduction factor for stirrup were evaluated. They are smaller than the test strengths and can ensure the safety in terms of strength capacity. For HH series specimens, the stirrups in the lap zone are needed to prevent the pryout behaviour of headed bar.

The Effect of Shear Span-to-Effective Depth Ratio of Reinforced high Strength Concrete Deep Beam (고강도 철근콘크리트 춤이 큰 보의 전단스팬비 효과)

  • 오정근;성열영;안종문;이광수;신성우
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.5
    • /
    • pp.225-231
    • /
    • 1997
  • 콘크리트 압축강도 및 전단스팬비의 변화에 의한 고강도 철근콘크리트 춤이 큰 보의 전단거동 및 내력특성을 파악하기 위한 실험적 연구를 하였다. 춤이 큰 보는 하중작용점과 하중지지점을 연결하는 사균열의 확대에 의해 취성전단파괴양상을 나타내었으며 하중작용점 하중 지지점의 콘크리트 압괴를동반하는 전단압축 및 전단인장파괴 형태로 최종파괴되었다. 전단스팬비가 감소함에 따라 사균열전단응력 및 최대전단응력은 크게 증가하였으며, ACI 및 CIRIA규준식은 부재의 최대전단응력을 비교적 정확하게 예측하고 있음을 파악하였다.

Study of Development on Mechanical Connection of Reinforcing Bars (With Study of Tensile Force) (철근 커플러 개발에 관한 연구 (인장력 시험을 중심으로))

  • 최희복;김광희;강경인
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2002.11a
    • /
    • pp.37-41
    • /
    • 2002
  • Lap splice is used in building construction up to recently. As buildings become higher and larger, the use of high tensile bar is increasing due to increasing in the use of high compression concrete. However the using of high tensile bar in lap splice causes eccentricity and difficulty in placing of concrete inside the form, therefore not allowing enough intervening material. Various mechanical connection are being developed but the coupler of today needs either a secondary intervening material or secondary processing that consumes much time. Therefore a coupler, needing neither a secondary intervening material nor secondary processing, was made in this study which lead to following results. (1) Breaking occurred in all experimented rebar. (2) Acquirement of tension exceeding the standard requirement. (3) Acquirement of elongation percentage within the standard requirement.

  • PDF

Simplified Design Equation of Splice Length of Deformed bars in Compression (압축을 받는 이형철근의 단순화된 이음 설계식)

  • Chun, Sung-Chul;Lee, Sung-Ho;Oh, Bo-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.33-34
    • /
    • 2010
  • A compression lap splice becomes an important issue due to development of ultra-high strength concrete. Based on the basic form of design equations for development lengths of deformed bars and hooks in tension, simplifed design equation of deformed bars in compression was proposed using regression analyses.

  • PDF

An Experimental Study on the Cold Bending of Reinforcing Bar (철근의 Bending and Straightening에 대한 실험적 연구)

  • 조현우;최희복;강경인
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.109-113
    • /
    • 2003
  • In this experiment, we distribute the bending angle to 60$^{\circ}$, 90$^{\circ}$, 120$^{\circ}$, and we separate it in to two groups. One is straightening right after bending and the other is straightening after one week. The bars we will use are HD13 and HD16. The number of tests will be 60 times. In the case of HD16, the increase of bending angle decreased yield strength and maximum strength. And compared with thinner bars, HD16 showed bigger differences in yield strength and maximum strength when the 'being bent' duration got longer. So it shows that when we bend and after straighten a bar, stress change takes place on the surface of the bar. At the beginning it shows it's ductility after that it deforms while transforming it's character to destroying. And also, if we straighten a bar after bending, it doesn't get straighten like the original form. So it makes torsion and this torsion makes moments in different areas.

  • PDF

Rigid-Body-Spring Network with Visco-plastic Damage Model for Simulating Rate Dependent Fracture of RC Beams (Rigid-Body-Spring Network를 이용한 RC 보의 속도 의존적 파괴 시뮬레이션)

  • Lim, Yun-Mook;Kim, Kun-Hwi;Ok, Su-Yeol
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.265-268
    • /
    • 2011
  • 하중 속도에 따른 콘크리트 재료의 역학적 특성은 구조물의 동적파괴거동에 영향을 미친다. 본 연구는, rigid-body-spring network를 이용하여 파괴해석을 수행하고, 거시적 시뮬레이션에서 속도효과를 표현하기 위하여 점소성 파괴모델을 적용하였다. 보정을 위해서 Perzyna 구성관계식의 점소성 계수들이 다양한 하중속도에 따른 직접인장실험을 통해서 결정되었다. 동정상승계수를 이용하여 하중 속도가 증가함에 따른 강도 증가를 표현하였고 이를 실험결과와 비교하였다. 다음으로 느린 하중속도와 빠른 하중속도에 따라 단순 콘크리트 보와 철근 콘크리트 보에 대한 휨 실험을 수행하였으며, 하중 속도에 따라서 서로 다른 균열 패턴을 관찰할 수 있었다. 빠른 하중은 보의 파괴가 국부적으로 나타나게 만드는데, 이는 속도 의존적 재료의 특성 때문이다. 구조적인 측면에서, 보강재는 느린 하중속도에서 균열의 크기를 줄이고 연성을 높이는 데 큰 영향을 미친다. 본 논문은 속도 의존적 거동에 대한 이해와 동적하중에 대한 보강효과를 제시한다.

  • PDF