• Title/Summary/Keyword: 인장와(印章瓦)

Search Result 603, Processing Time 0.026 seconds

COMPATIBILITY OF SELF-ETCHING DENTIN ADHESIVES WITH RESIN LUTING CEMENTS (자가부식형 상아질접착제와 레진시멘트와의 적합성에 관한 연구)

  • Kim, Do-Wan;Park, Sang-Jin;Choi, Kyoung-Kyu
    • Restorative Dentistry and Endodontics
    • /
    • v.30 no.6
    • /
    • pp.493-504
    • /
    • 2005
  • This study was performed to investigate the compatibility between 4 dentin adhesives and 4 resin luting cements. Dentin adhesives used in this study were All-Bond 2 (Bisco Inc., Schaumbrug, IL, USA), Clearfil SE-Bond (Kuraray Medical Inc, Osaka, Japan), Prompt L-Pop (3M Dental Products, St. Paul, MN, USA), One-Up Bond F (Tokuyama corp., Tokyo, Japan) Resin luting cements used in this study were Choice (Bisco Inc., Schaumbrug, IL, USA), Panavia F (Kuraray Medical Inc, Osaka, Japan), RelyX ARC (3M Dental Products, St. Paul, MN, USA) Bistite II DC (Tokuyama corp., Tokyo, Japan). Combination of each dentin adhesive and corresponding resin cement was made to 16 experimental groups. Flat dentin surfaces was created on mid-coronal dentin of extracted mandibular third molars, then dentin surface was polished with 320-grit silicon carbide abrasive papers. Indirect resin composite block (Tescera, Bisco) was fabricated. Its surface for bonding to tooth was polished with silicon carbide abrasive papers Each dentin adhesive was treated on tooth surface and resin composite overlay were luted with each resin cement. Each bonded specimen was poured in epoxy resin and sectioned occluso-gingivally into 1.0mm thick slab, then further sectioned into $1.0{\times}1.0mm^2$ composite-dentin beams. Microtensile bond strength was tested at a crosshead speed of 1.0mm/min. The data were analysed by one-way ANOVA and Duncan's multiple comparison tests The results of this study were as follows, 2-step self-etching dentin adhesive which has additional bonding resin is more comparison than tests. self-etching dentin adhesive.

Using ultrasound infrared thermography to detect defects in lap joint Friction stir welding (초음파 적외선 열화상을 이용한 마찰교반용접부의 결함 검출)

  • Park, Hee-Sang;Choi, Man-Young;Park, Jung-Hak;Lee, Young-Ho;Choi, Won-Young;Ko, Jun-Bin;Choi, Won-Doo
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.67-67
    • /
    • 2009
  • 알루미늄 합금 재질은 무게의 경량화와 기계적강도가 우수하며 다른 비철금속에 비하여 값이 저렴한 장점이 있다. 현재 산업현장에서 활용하는 가장 흔한 접합법으로 TIG, RSW 등과 같은 용융 용접법을 현재는 많이 사용 하고 있지만 열전도도가 높아 열 확산이 빠르고, 이에 따라 모재의 팽창이 일어나 열변형을 유발하며, 산화피막은 그 내부에 함유된 결정수가 아크용접 중 분해되어 수소를 방출함으로 기공이 발생하여 부도체로 저항용접시 전도성을 방해하는 등의 문제를 발생시킨다. 또한 철에 비해 4배정도 큰 전기전도율에 따라 저항용접시 대전류를 사용해야 하는 등의 문제점이 발생하고 있다. 이와 같은 알루미늄 합금의 용융용접 과정에서 발생하는 단점을 극복하는 기술로 고상접합 방법인 마찰교반용접법(Friction Stir Welding)이 활용되고 있다. FSW는 1991년 영국의 TWI에서 개발된 최신 용접법으로 모재를 용융점 아래에서 고상용접시키는 방법으로 용융에 따른 열변형과 흄가스(hume gas)와 스패터(spatter)를 억제시켜 주는 친환경적인 용접법이다. 이러한 마찰교반용접의 기술은 그동안 특허에 따른 로열티가 산업현장에서 사용하는데 문제가 되었으나 특허보호 기간인 20년이 1년정도의 기간밖에 남지 않은 상황에서 그 사용은 날로 증가하리라 본다. 이러한 마찰교반용접부의 결함을 평가하는 방법에는 UT, RT 등이 활용되고 있으나 얇은 박판에서의 결함검출은 용이하지 않다. 이리한 문제점을 해결하기위하여 초음파 가진을 이용한 적외선 열화상 검출 기법을 이용하여 마찰교반용접부의 결함 검출 가능성을 연구하였다. 20kHz의 주파수를 400Watt로 가진시켜 겹치기(lap joint) 마찰교반용접이된 A6061-T6의 용접부에 초음파를 입사하였을 때 발생하는 열을 적외선 열화상 카메라를 이용하여 측정함으로써 마찰교반겹치기 용접부의 결함 검출에 활용하였다. 용접부에 초음파를 입사하였을 때 부분적으로 온도차이가 발생하였고, 그에 따른 열화상을 검출 할 수 있었다. 이러한 열화상과 실제 시험편의 용접부의 강도를 평가하기 위하여 인장시험을 하였다. 그 결과 초음파 적외선 열화상 검출에서 발열부위가 나타난 부분이 인장시험에서 낮은 인장강도를 보였다.

  • PDF

Evaluation of Mechanical Test Characteristics according to Welding Position in FCAW Heterojunction (FCAW 이종접합에서 용접자세에 따른 기계적 시험 특성 평가)

  • Cho, Byung-Jun;Lee, Soung-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.649-656
    • /
    • 2019
  • Flux cored arc welding (FCAW), which is used widely in many fields, such as shipyards, bridge structures, construction machinery, and plant industry, is an alternative to shielded metal arc welding (SMAW). FCAW is used largely in the welding of carbon and alloy steel because it can be welded in all poses and obtain excellent quality in the field under a range of working conditions. In this study, the mechanical properties of welded parts were analyzed after different welding of SS400 and SM490A using FCAW. The following conclusions were drawn. The tensile test results satisfied the KS standard tensile strength in the range of 400~510 N/mm2 in all welding positions. The bending test confirmed that most of the specimens did not show surface breakage or other defects during bending and exhibited sufficient toughness, even after plastic deformation. The hardness test results were lower than the standard value of 350 Hv of KS B 0893. Similar to the hardness test, were greater than the KS reference value. The macro test revealed no internal flaws, non-metallic inclusions, bubbles or impurities on the entire cross section of the weld, and there were no concerns regarding lamination.

A Study on the Prolonged Time Heat Resistance of Shielding Materials Based on Modified and Novolac Type Epoxy Resin (개질 및 노블락형 에폭시수지 차폐재의 장기내열성에 관한 연구)

  • Cho, Soo-Haeng;Oh, Seung-Chul;Do, Jae-Bum;Ro, Seung-Gy;Park, Hyun-Soo
    • Applied Chemistry for Engineering
    • /
    • v.9 no.6
    • /
    • pp.884-888
    • /
    • 1998
  • Effects of heating time under high temperature on the thermal and mechanical properties of neutron shielding materials based on modified (KNS-102), hydrogenated(KNS-106) bisphenol-A type epoxy resin and phenol-novolac(KNS-611) type epoxy resin for radioactive material shipping casks have been investigated. At early stages, the initial decomposition temperatures of the shielding materials of KNS-102, KNS-106 and KNS-611 increased with the heating time under high temperature, but it was rarely affected by the heating time in the later stages. In addition, the thermal conductivities of KNS-102 and KNS-106 decreased with heating time, but that of KNS-611 increased with the heating time. On the contrary, the thermal expansion coefficients of neutron shielding materials decreased with increase of heating time. At the high temperature, the tensile strength and flexural strength of the shielding materials of KNS-102 and KNS-611 increased with heating time, but those of KNS-106 decreased with increase of heating time. And the heating time under high temperature on the neutron shielding materials did not show measurable loss of weight and hydrogen content.

  • PDF

Synthesis and Properties of Polyurethane/Clay Nanocomposites Containing Siloxane Segment (실록산 세그먼트를 가진 폴리우레탄/점토 나노복합체의 제조 및 물성에 관한 연구)

  • Lee Jung Eun;Kim Hyung Joong
    • Polymer(Korea)
    • /
    • v.29 no.2
    • /
    • pp.177-182
    • /
    • 2005
  • Montmorillonite (MMT) modified with siloxane diamine was reacted with a reactant obtained from 4,4'-diphenyl methane diisocyanate (MDI) and polyester type polyol, $Nippollan4010(\bar{M}_n2000)$. Finally, polyurethane (PU)/MMT composites were prepared by using 1,4-butane diol as a chain extender in $25\;wt\%$ solution of N,N-dimethyl acetamide (DMAc). It was expected that these nanocomposites had superior exfoliation property to that of MMT dispersed polyurethanes produced by simple mixing due to insertion of siloxane main chain to the silicate interlayer of MMT. Extent of reaction and formation of final products were analysed by using FT-IR spectroscopy. Dispersion into the PU and intercalation of MMT were identified by applying X-ray diffraction (XRD) and transmission electron microscopy (TEM). Tensile data were acquired by universal test machine (UTM). Thermal stability and variation of surface energy were characterized by thermal gravimetric analysis (TGA) method and measurement of contact angle on the synthesized composites, respectively. As the results the organo-MMT modified with siloxane diamine in the PU composites has an intercalated structure relatively well-expanded rather than a completely exfoliated structure. The tensile strengths and the moduli for the PU/organo-MMT composites were drastically enhanced in comparison to those of $PU/Na^+-MMT$ composites.

Physical Properties of Chitosan Film made from Crab Shell (꽃게 껍질에서 분리제조한 키틴산 필름의 물성에 관한 연구)

  • Cho, Jeong-Suk;Han, Jeong-Jun;Lee, Cherl-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.574-580
    • /
    • 1992
  • Chitin was isolated from the residue of enzymatically hydrolyzed crab, Portunus trituberculatus, and further deacetylated by alkaline boiling to make chitosan. The physical properties of chitosan solution and its film forming properties were examined. The functional characteristics of chitosan film were compared to those of cellophane, polyvinyl chloride (PVC) and polyethylene (PE) films. The proximate chemical composition of chitin obtained from crab residue was 6.95% nitrogen, 0.3% crude ash and 4.57% moisture and the product yield was 12.8% based on a dry material basis. The degree of deacetylation of chitosan was $79{\sim}92%$ and $70{\sim}86%$ as determined by IR spectroscopy, and $70{\sim}86%$ as determined by colloid titration method each respectively. The chitosan at 1% acetic acid solution showed distinct pseudoplastic flow behavior. The flow behavior index and consistency index were 0.8886, 0.2084 $MPa{\cdot}s^n$ for 0.4% solution and 0.8498, 0.6190 $MPa{\cdot}s^n$ for 0.8% solution, respectively. The chitosan film had the highest tensile strength $(888 kg/cm^2)$ and water permeability $(100\;g/m^2{\cdot}24\;hrs)$ among the tested films, but relatively low elongation property (49%). It showed the similar tear strength (90kg/cm) and light permeability (87.7%) to other films tested in spite of the relatively high haze value (12.5%). As the thickness of chitosan film increased from 0.025 to 0.050 mm, the tensile strength of film decreased distictively, and the degree of elongation, tear strength, and water permeability of film also decreased slightly. Whereas the light permeability of film did not change and the haziness of film slightly increased by the increase of film thickness.

  • PDF

Preparation and Characteristics of the Blends of Polyimide and Polybenzoxazole Having Imide Ring (주사슬에 이미드고리를 갖는 Polybenzoxazole과 Polyimide의 블렌드 제조 및 특성)

  • Wee, Doo-Young;Han, Jin-Woo;Choi, Jae-Kon
    • Polymer(Korea)
    • /
    • v.37 no.4
    • /
    • pp.420-430
    • /
    • 2013
  • Polymer blends were prepared by solution blending poly(amic acid) (PAA) and poly(o-hydroxy amide) (PHA) having imide groups in the main chain. The polymers and their blends were characterized by using FTIR, FT NMR, DSC, TGA, SEM, XRD, UTM, and LOI. The solubility study revealed that the blends were readily soluble in aprotic solvents such as DMF, DMAc, DMSO, and NMP. The maximum weight loss of the blends occurred in the range of $578-645^{\circ}C$, and the maximum weight loss temperature increased with increasing the PHA content. The PBO/PI blends showed relatively high char yields (i.e. 56-69 wt%). The LOI values of the blends were in the range of 24.5-28.1% and increased with increasing the PHA content. The initial modulus and tensile strength of the blends increased by 57 to 121% and by 67 to 107%, respectively, compared to the values of PAA. Especially the initial modulus and tensile strength of the PHA/PAA=2/8(wt/wt) showed the highest values of 4.87 GPa and 108 MPa, respectively. The PHA domains of $0.03-0.1{\mu}m$ in their size were more or less uniformly dispersed. The interfacial adhesion between PAA and PHA was found to be good.

Effect of Maximum Aggregate, Porosity, and Temperature on Crack Resistance and Moisture Susceptibility of Porous Asphalt Mixtures (최대입경, 공극률, 온도가 다공성 아스팔트 혼합물의 균열저항성 및 수분민감성에 미치는 영향)

  • Yoo, In-Kyoon;Lee, Su-Hyung;Park, Ki-Soo;Yoon, Kang-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.611-619
    • /
    • 2021
  • Porous asphalt pavement (PAP) has many functions, such as reducing accidents and decreasing noise. On the other hand, vulnerability is inevitable because PAP contains approximately 20% porosity. This study evaluated the effects of the maximum aggregate size (MAS), temperature, and porosity on the PAP durability. The indirect tensile strength measures durability. This study tested the samples that stayed dry and were moisturized by freezing and thawing for mixtures having the same porosity of 20% and MAS of 13mm, 10mm, and 8mm. The same test was performed on a mixture of 20% and 22% voids made of the same material with a MAS of 10mm. As a result, for 20% porosity, significant differences in the changes in MAS and temperature were found. A clear difference was observed between 8mm and 13mm under dry conditions, but there were no other significant differences in the MAS change. Furthermore, there was a clear difference in temperature for the change in porosity and temperature, but the gap in 2% porosity at 20% did not show a clear difference. Therefore, it is necessary to develop a more durable PAP through quantitative evaluations of the factors affecting the PAP durability.

Effect of additional coating of bonding resin on the microtensile bond strength of self-etching adhesives to dentin (접착레진의 추가도포가 자가부식형 접착제의 상아질에 대한 미세인장접착강도에 미치는 영향)

  • Jung, Moon-Kyung;Cho, Byeong-Hoon;Son, Ho-Hyun;Um, Chung-Moon;Han, Young-Chul;Choung, Sae-Joon
    • Restorative Dentistry and Endodontics
    • /
    • v.31 no.2
    • /
    • pp.103-112
    • /
    • 2006
  • This study investigated the hypothesis that the dentin bond strength of self-etching adhesive (SEA) might be improved by applying additional layer of bonding resin that might alleviate the pH difference between the SEA and the restorative composite resin. Two SEAs were used in this study; Experimental SEA (Exp, pH: 1.96) and Adper Prompt (AP, 3M ESPE, USA, pH: 1.0) In the control groups they were applied with two sequential coats In the experimental groups, after applying the forst coat of assigned SEAs, the D/E bonding resin of All-Bond 2 (Bisco Inc., USA, pH: 6.9) was applied as the intermediate adhesive. Z-250 (3M ESPE, USA) composite resin was built-up in order to prepare hourglass-shaped specimens . The microtensile bond strength (MTBS) was measured and the effect of the Intermediate layer on the bond strength was analyzed for each SEA using t-test. The fracture mode of each specimen was inspected using stereomicroscope and Field Emission Scanning Electron Microscope (FE-SEM). When D/E bonding resin was applied as the second coat, MTBS was significantly higher than that of the control groups . The incidence of the failure between the adhesive and the composite or between the adhesive and dentin decreased and that of the failure within the adhesive layer increased. According to the results , applying the bonding resin of neutral pH can increase the bond strength of SEAs by alleviating the difference in acidity between the SEA and restorative composite resin.

Optimization for Underwater Welding of Marine Steel Plates (선박용 강판의 수중 용접 최적화에 관한 연구)

  • 오세규
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.20 no.1
    • /
    • pp.49-59
    • /
    • 1984
  • Optimizing investigation of characteristics of underwater welding by a gravity type arc welding process was experimentally carried out by using six types of domestic coated welding electrodes for welding of domestic marine structural steel plates (KR Grade A-1, SWS41A, SWS41B,) in order to develop the underwater welding techniques in practical use. Main results obtained are summarized as follows: 1. The absorption speed of the coating of domestic coated lime titania type welding-electrode became constant at about 60 minutes in water and it was about 0.18%/min during initial 8 minutes of absorption time. 2. Thus, the immediate welding electrode could be used in underwater welding for such a short time in comparison with the joint strength of in-atmosphere-and on-water-welding by dry-, wet-or immediate-welding-electrode. 3. By bead appearance and X-ray inspection, ilmenite, limetitania and high titanium oxide types of electrodes were found better for underwater-welding of 10 mm KR Grade A-1 steel plates, while proper welding angle, current and electrode diameter were 6$0^{\circ}C$, above 160A and 4mm respectively under 28cm/min of welding speed. 4. The weld metal tensile strength or proof stress of underwater-welded-joints has a quadratic relationship with the heat input, and the optimal heat input zone is about 13 to 15KJ/cm for 10mm SWS41A steel plates, resulting from consideration upon both joint efficiency of above-100% and recovery of impact strength and strain. Meanwhile, the optimal heat input zone resulting from tension-tension fatigue limit above the base metal's of SWS41A plates is 16 to 19KJ/cm. Reliability of all the empirical equations reveals 95% confidence level. 6. The microstructure of the underwater welds of SES41A welded in such a zone has no weld defects such as hydrogen brittleness with supreme high hardness, since the HAZ-bond boundary area adjacent to both surface and base metal has only Hv400 max with the microstructure of fine martensite, bainite, pearlite and small amount of ferrite.

  • PDF