• Title/Summary/Keyword: 인장에 의한 손상

Search Result 95, Processing Time 0.026 seconds

Prediction of Stress-Strain Relation and Evolution of Compliance of Concrete by a Micromechanical Model (미세역학이론에 의한 콘크리트의 응력-변형도 관계와 연성도의 예측에 관한 연구)

  • 김진구
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.3
    • /
    • pp.147-155
    • /
    • 1996
  • In this study a model for the constitutive relation of a plane concrete is proposed using a micromechariical model. In this model a precursor crack is assumed to exist in the aggregate-cement paste interface, and the LEFM is used to predict the nucleation of the bond cracks and the grow th of mortar cracks. For computational convenience the bond crack-mortar crack configuration is transformed into a straight crack with a point force in the middle. 'The overall compliance and the cons,titutive relation are predicted from the damage due to microcracks, and the predicted stress-strain curves are compared with some experimental data. According to the results, the model predictions are better for under tensile loading than under compression, for high, strength concrete than for normal strength concrete.

A Study on Development of PHC pile driving force increase device on soft ground (연약지반상 PHC파일 항타력 증대장치 개발에 관한연구)

  • Kim, Jong-Gil;Lee, Young-Joo
    • Journal of Digital Convergence
    • /
    • v.18 no.10
    • /
    • pp.219-224
    • /
    • 2020
  • The purpose of this study is to develop a device to replace the pre-boring method, which is generally constructed, to prevent pile damage caused by tension cracks that reason from tension waves generated during PHC pile construction on soft ground. Tension cracks are caused by tension waves from the hammer striking during the PHC pile hitting on the soft ground, which in turn leads to faulty construction. In order to prevent the occurrence of tension waves generated during driving, apply separate driving force increasing device to prevent the generation of tension waves, and pile damage as well. Also, it is an eco-friendly construction method that reduces smoke and noise by improving construction speed, reducing construction costs, and able to small equipment when developing equipment. This development equipment is a piece of effective equipment that can pioneer the Saemangeum reclamation area, the South-east Asian construction market, where the Deep soft ground is distributed.

Evaluation of Cumulative Damage of Pavement Concrete Using Split Tension Fatigue Test (쪼갬인장 피로시험 방법에 의한 포장용 콘크리트의 누적 손상 평가)

  • 윤병성;김동호;정원경;이봉학;윤경구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.353-358
    • /
    • 2002
  • The purpose of this paper was to estimate the cumulative damage of pavement concrete by split tension fatigue test. The split tension fatigue test of variable amplitude loading were performed in two and three stages. The results of the fatigue test by variable amplitude loading showed that the sums of damage were greater than 1 in the increasing sequence loading tests, and less than 1 in the decreasing sequence loading tests. The remaining life estimated by equivalent damage theory was almost similar to that of experimental results.

  • PDF

최신 압입시험기를 이용한 산업설비의 비파괴 안전진단

  • Lee, Yoon-Hee;An, Jung-Hoon;Choi, Yeol;Son, Dong-Il;Jang, Jae-Il;Kwon, Dong-Il
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2000.11a
    • /
    • pp.9-16
    • /
    • 2000
  • 1970년대의 급격한 경제 성장시기에 건설된 구조물들은 30년 이상의 사용으로 인해 노후화가 심각하며 대형 산업재해의 가능성을 가지고 있다. 따라서 노후 설비들의 안전 한 사용을 위해서는 소재 물성의 정기적인 진단을 통한 정확한 수명예측이 필요하다. 그러나 기존의 소재 물성평가를 위한 표준 방법인 일축인장 및 파괴역학 시험의 경우, 변형 및 파괴 거동에 대한 많은 정보를 제공하고 있지만, Bulk 형태의 표준시편이 필요하여 시편을 채취하는 과정에서 설비와 구조물에 노치에 의한 손상이 가해질 수 있어 구조물의 안전성을 오히려 해치는 결과를 초래할 수 있다. 또한 채취 중의 응력완화 및 손상에 의해 표준시편도 본래 현장 구조물과 다른 물성을 가질 수 있다.(중략)

  • PDF

Fatigue Life Prediction of FRP Composites under Uniaxial Tension and Pure Torsion Loadings (인장-비틀림 하중에 의한 섬유강화 복합재료의 피로수명 예측)

  • 박성완;이장규
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.352-361
    • /
    • 2003
  • A fatigue damage accumulation model based on the continuum damage mechanics theory was develope(1 where modules decay ratios in tension and shear on used as indicators for damage variables D . In the model, the damage variables are considered to be second-order tensors. Then the maximum principal damage variable, $D^*$ is introduced According to the similarity to the Principal stress, $D^*$ is obtained as the maximum eigen value of damage tensor [D']. Under proportional tension and torsion loadings, fatigue lives were satisfactorily predicted at any combined stress ratios using the present model in which the fatigue characteristics only under uniaxial tension and pure torsion loadings on needed. Fatigue life prediction under uniaxial tension and pure torsion loadings, was performed based on the damage mechanics using boundary element method.

  • PDF

Fatigue Life Prediction of FRP Composites under Uniaxial Tension and Pure Torsion Loadings (인장-비틀림 하중에 의한 섬유강화 복합재료의 피로수명 예측)

  • Park Sung-Oan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.6
    • /
    • pp.64-73
    • /
    • 2004
  • A fatigue damage accumulation model based on the continuum damage mechanics theory was developed where modulus decay ratios in tension and shear were used as indicators for damage variables D. In the model, the damage variables are considered to be second-order tensors. Then, the maximum principal damage variable, $D^*$ is introduced. According to the similarity to the principal stress, $D^*$ is obtained as the maximum eigen value of damage tensor [D]. Under proportional tension and torsion loadings, fatigue lives were satisfactorily predicted at any combined stress ratios using the present model in which the Fatigue characteristics only under uniaxial tension and pure torsion loadings were needed. Fatigue life prediction under uniaxial tension and pure torsion loadings, was performed based on the damage mechanics using boundary element method.

통합형 점소성 구성방정식을 적용한 유한요소해석에 관한 연구

  • Kim, Jong-Beom;Lee, Hyeong-Yeon;Yoo, Bong;Kwak, Dae-Young;Lim, Yong-Taek
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.1014-1020
    • /
    • 1995
  • 고온구조물은 고온에서의 운전상태에 따라 복잡한 하중이력을 경험하게 됨으로써 상온에서 발생하는 손상 기구와는 달리 온도 의존성을 가질 뿐만 아니라, 상온에서 볼 수 없는 크립-피로의 상호작용에 의한 손상현상이 나타나게 된다. 따라서 고온 구조물의 건전성 평가를 위한 비탄성 해석을 신뢰성 있게 수행하기 위해서는 구조물의 비선형 거동을 비교적 정확히 예측할 수 있는 통합 구성방정식의 개발 및 적용과 온도에 따른 재료의 물성치 확보가 필수적이다. 본 연구에서는 통합 점소성 모델인 수정된 Chaboche 모델에 대해서 내연적 시간 적분법을 적용하여 ABAQUS의 UMAT으로 구현하였고, 개발된 프로그램을 이용하여 INCONEL 718을 사용한 단순 인장해석, 반복 소성 특성해석 및 크립 해석을 수행하여 프로그램의 신뢰성을 평가하였다. 또한 원공이 있는 평판에 대한 예제해석을 수행함으로써 개발된 프로그램이 고온구조물의 건전성 평가를 위한 비탄성 해석에 적절하게 적용될 수 있음을 확인하였다.

  • PDF

Behavior of Stress and Deformation Generated by Repair Welding under Loading (공용중 보수용접에 의한 용접부의 응력 및 변형의 거동 - 인장력 작용중 균열보수용접에 의해 생기는 응력 및 변형의 거동 -)

  • Chang, Kyong-Ho;Lee, Sang-Hyong;Jeon, Jun-Tai
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.3 s.46
    • /
    • pp.269-279
    • /
    • 2000
  • It is much expected that steel bridges, which have been damaged by increase of vehicle load and corrosion, need repair or strengthening. In this paper, the stress generated by repair welding under loading are analyzed by three dimensional elasto-plastic analyses. The longer and deeper repair weld line bocemes, the larger the magnitude of transient stress becomes. The magnitude of transient stress generated by repair welding under loading $({\sigma}_y/3,\;{\sigma}_a)$ is similar to summation of stresses generated by repair welding and loading. The longer repair weld line ratio(1/b) becomes, the larger the magnitude of transient stress generated by repair welding under loading bocomes. And, the longer repair weld line ratio(1/b) becomes, the larger the magnitude of in-plane displacement generated by repair welding under loading$({\sigma}_y/3,\;{\sigma}_a)$.

  • PDF

Analysis of Long-Term Performance of Geogrids by Considering Interaction among Reduction Factors (감소계수 상호영향을 고려한 지오그리드의 장기성능 해석)

  • Jeon, Han-Yong;Kim, Yuan-Chun;Jang, Yeon-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.7
    • /
    • pp.55-65
    • /
    • 2012
  • Total reduction factor that is used when calculating allowable tensile strength of geogrids is made by multiplying the installation damage reduction factor ($RF_{ID}$), chemical degradation reduction factor ($RF_D$), and creep reduction factor ($RF_{CR}$) etc. In case of a model estimating allowable tensile strength considering reduction factor over the short-term tensile strength of geogrids, it has a limit of not considering interaction force between reduction factors. Junction strength comes to be reduced by installation damages or chemical degradation in the same way as tensile strength. Single junction test method cannot properly test damaged samples and shows large deviations as it does not consider scale effect. Besides, regarding calculating shear strength, no reasonable study on reduction factors was conducted yet. Therefore, in this study, reduction factors that may affect the long-term performance of geogrids were revaluated considering various conditions and accurate long-term allowable tensile strength was calculated considering interrelation between reduction factors. Creep results after installation damage and chemical resistance test showed lower value than calculated value according to GRI GG-4. After the installation damage test and the chemical resistance test, the reduction factor of junction strength was less than that of tensile strength. Shear strength before and after installation damage showed no change or increase.

Effects of Apricot Kernel Oil on the Improvement Hair Texture (살구씨 오일에 의한 화학적 손상모발의 개선 효과)

  • Kim, Ju-Sub;Moon, Ji-Sun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.700-707
    • /
    • 2021
  • This study aimed to understand the effects of apricot kernel oil on the improvement of hair texture by producing a hair texture improvement agent added with apricot kernel oil and then applying it to damaged hair. In the test method and measurement, the agent was produced by putting different contents of apricot kernel oil like 0 g, 1 g 2 g, and 3 g. After applying the produced agent to bleached sample hair, it was heat treated and then left as it was. The comparative analysis was conducted by measuring each sample before and after application. To understand its effects on the improvement of hair texture, the tensile strength, absorbance with the use of methylene blue, and gloss were measured. In the results of this study, the tensile strength was increased in every sample except for healthy hair after application. In the results of analyzing the absorbance with the use of methylene blue, it was decreased in samples like 7L(1), 7L(2), 7L(3), and 9L(3) after application. In the results of measuring the gloss, it was increased in the samples like 7L(1), 7L(2), 7L(3), and 9L(3). Such changes in the tensile strength, absorbance, and gloss showed the effects of apricot kernel oil on the texture improvement of damaged hair. In the future, it would be necessary to have researches on various methods of measurement and treatment.