• Title/Summary/Keyword: 인장에 의한 손상

Search Result 95, Processing Time 0.028 seconds

Effects of Milk Thistle Oil on Chemically Damaged Hair Improvement (밀크씨슬 오일에 의한 화학적 손상모발의 개선 효과)

  • Kim, Ju-Sub;Jeon, Yong-Han
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.2
    • /
    • pp.434-440
    • /
    • 2021
  • This study aimed to understand the effects on the improvement of hair texture by producing a hair texture improvement agent with milk thistle oil, and then applying it to the damaged hair. Each sample before and after application was measured. To understand the effects on the improvement of hair texture, the tensile strength, absorbance with the use of methylene blue, and gloss were measured. In the results of measuring the tensile strength to understand the effects on the improvement of hair texture, In the results of analyzing the absorbance with the use of methylene blue, the value after application was decreased than the value before application. In the results of measuring the gloss, none of the samples showed huge differences. In the results of this study, the milk thistle oil showed the effects on the texture improvement of damaged hair.

Fracture Behaviors of Jointed Rock Model Containing an Opening Under Biaxial Compression Condition (이축압축 조건에서 공동이 존재하는 유사 절리암반 모델의 파괴 거동)

  • SaGong, Myung;Yoo, Jea-Ho;Park, Du-Hee;Lee, J.S.
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.10
    • /
    • pp.17-30
    • /
    • 2009
  • Underground construction such as tunneling can induce damages on the surrounding rock mass, due to the stress concentration of in situ stresses and excessive energy input during construction sequence, such as blasting. The developed damage on the rock mass can have substantial influence on the mechanical and hydraulic behaviors of the rock masses around a tunnel. In this study, investigation on the generation of damage around an opening in a jointed rock model under biaxial compression condition was conducted. The joint dip angles employed are 30, 45, and 60 degrees to the horizontal, and the synthetic rock mass was made using early strength cement and water. From the biaxial compression test, initiation and propagation of tensile cracks at norm to the joint angle were found. The propagated tensile cracks eventually developed rock blocks, which were dislodged from the rock mass. Furthermore, the propagation process of the tensile cracks varies with joint angle: lower joint angle model shows more stable and progressive tensile crack propagation. The development of the tensile crack can be explained under the hypothesis that the rock segment encompassed by the joint set is subjected to the developing moment, which can be induced by the geometric irregularity around the opening in the rock model. The experiment results were simulated by using discrete element method PFC 2D. From the simulation, as has been observed from the test, a rock mass with lower joint angle produces wider damage region and rock block by tensile cracks. In addition, a rock model with lower joint angle shows progressive tensile cracks generation around the opening from the investigation of the interacted tensile cracks.

Evaluation of Cross-Sectional Damage for RC Column Subjected to Axial Loading and Steel Corrosion (철근 부식과 축방향 하중을 받는 철근-콘크리트 기둥 단면의 손상 평가)

  • Changyoung Kim;Ki Yong Ann
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.476-483
    • /
    • 2023
  • The present study concerns modelling the structural behaviour for concrete structure into the crack initiation at corrosion of steels. The degradation source included the axial load and steel corrosion. A development of the rust formed on the steel surface was considered with the interfacial gap between steel and concrete. As a result, the tensile damage could occur on the surface of concrete into the cracking with no steel corrosion, which could be further developed by the increasing rust formation, while the cracking at the steel-concrete interface was mainly attributed to the compressive deformation, being restricted within the interfacial zone.

Determining Parameters of Dynamic Fracture Process Analysis(DFPA) Code to Simulate Radial Tensile Cracks in Limestone Blast (석회암 내 방사상 발파균열을 예측하기 위한 동적파괴과정 해석법의 입력물성 결정법에 관한 연구)

  • Kim, Hyon-Soo;Kang, Hyeong-Min;Jung, Sang-Sun;Kim, Seung-Kon;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.31 no.2
    • /
    • pp.6-13
    • /
    • 2013
  • Recently, complaints or environmental problems caused by the noise and dust generated from crusher of the mine and quarry are emerging. Therefore mining facilities such as crushers and mills have been installed in an underground. In order to facilitate crusher equipments in the underground, excavation of large space is required and then the stability of the large space underground structure is an important issue. In this study, the blast experiments, which use a block of the limestone, are performed. Based on the blast experiments, the numerical model was prepared and simulated using dynamic fracture process analysis code(DFPA) with considering the rising time of applied borehole pressure and microscopic tensile strength variation. Comparing the non-dimensional crack length and no-dimensional tensile strength obtained from blast experiments and numerical analyses, the input parameters of DFPA code for predicting a radial tensile crack in limestone blasting were determined.

Damage Characteristics of Korean Traditional Textiles by Nitrogen Dioxide (NO2) Concentrations (이산화질소(NO2) 농도에 따른 전통직물의 손상 특성)

  • Kim, Myoung Nam;Lim, Bo A;Kim, Seojin;Lee, Sun Myung
    • Journal of Conservation Science
    • /
    • v.29 no.3
    • /
    • pp.197-207
    • /
    • 2013
  • The gas acceleration test was conducted to identify the deterioration of Korean traditional textiles caused by $NO_2$. Total 20 specimens were prepared using 4 different materials (silk, cotton, ramie, hemp) after dyeing with 5 colors (undyed, red, yellow, blue, black). The specimens were exposed to 0.01, 0.1, 1, 10, 100, and 1000 ppm $NO_2$ gas in the test chamber at $20^{\circ}C$, 50% RH for 1 day. Optical, chemical, and physical evaluation was carried out after the exposure. In the case of Korean traditional textile, color difference increased at 1 ppm/day, $NO_3{^-}$ concentration, carbonyl and C-$NO_2$ functional group increased while pH decreased at 10 ppm/day and tensile strength weakened at 100 ppm/day. when it comes to undyed textile, alteration of color difference on silk and hemp cloth, $NO_3{^-}$ concentration and tensile strength on hemp cloth was remarkable. In addition, color difference on blue and yellow textile, $NO_3{^-}$ concentration increase of yellow textile and tensile strength decrease of hemp cloth & ramie cloth were significant. The results suggest that critical $NO_2$ concentration of optical, chemical, and physical damage on Korean traditional textiles are 1ppm/day, 10 ppm/day, 100 ppm/day respectively.

Spectroscopic Evaluation on the Chemical Damage of Hair by Hydrogen Peroxide (과산화수소에 의한 모발의 화학적 손상에 관한 분광학적 평가)

  • Ha, Byung-Jo
    • Applied Chemistry for Engineering
    • /
    • v.22 no.5
    • /
    • pp.579-581
    • /
    • 2011
  • Spectroscopic evaluation of hair chemical damage was performed by SEM/EDS, CLSM, and FT-IR spectroscopy. In SEM/EDS, hydrogen peroxide treated hair showed the loose packing of surface scales, lower ratio of sulfur element and higher ratio of oxygen atom. In the optical single section by using CLSM, high fluorescent intensity appeared in untreated hair. However, in case of treated hair, low fluorescent intensity appeared. This results the aromatic amino acids which can be autofluorescent were more abundant than bleached hair. FT-IR spectra showed that cysteic acid band intensity was increased by performing the bleaching treatments. These results indicate that the oxidative damage cleaves the S-S bond and results in the lower working force of hair fiber.

A Study on the Damage to a Concrete Bridge Pier due to Fire (화재를 입은 콘크리트 교각의 손상에 관한 연구)

  • 윤우현
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.2
    • /
    • pp.117-125
    • /
    • 1995
  • In this study, the damage to a concrete br~dge pier due to flre caused by the fall of an oil truck were investigated by the use of FEM and by tensile tests for reinfortements. And thtse results were analyzed and compared with the measured values. In the FEM calculations, the selected variable was the fire temperature $T_a=500-800^{\circ}C$. The fixed values were the heat transition coefficient ${\alpha}=2000W/m^2{\cdot}K$. the initial temperature of concrete $T_0=5{\circ}C$ and the fire duration t=30 minutes. As the results obtained from numerical calculations, the property darrlage zone ap,)eared to be 1.5-4.1cm and the structure damage zone appeared to be 8.7- 10.1cm from the concrete surface. And this results give values very similar to those measured, nanlelv 2-4cm and 8~10cm respectively. The results frorn tensile tests give no serious loss of the tensile strength.

Evaluation of SHCC on Direct Tensile Load using Acoustic Emission Technique (음향방출기법을 이용한 혼입되는 섬유의 종류에 따른 SHCC의 직접인장거동특성 평가)

  • Kim, Yun-Su;Yun, Hyun-Do;Jeon, Esther;Park, Wan-Shin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.177-180
    • /
    • 2008
  • SHCC shows the high energy tolerance capacity due to the interfacial bonding of the fibers to the cement matrix. For effective material design and application of SHCC, it is needed to investigate the damage process and micro-fracture mechanism of cement matrix reinforced with different types of fibers. The objective of this paper is to investigate the direct tensile response of cement composites reinforced with single and hybrid fibers using acoustic emission(AE) technique. In this study, the correlations between AE signal and result of the direct tensile response of SHCC. For these purposes, three kinds of fibers were used: PET1.5%, PET1.0+PE0.5%, PET1.0%+PVA0.5%. The result of the direct tensile response of SHCC, for the same volume fraction of fibers, ultimate strength of PET-PE specimen was 2.7 times higher than specimens with PET fibers. And from AE signal value, AE event numbers and cumulative energy were different according to kind of fiber because of the different material properties of reinforced fiber.

  • PDF

Study on the Morphological Change of Straight Permanent Waved Hair by Tensile Strength Test (인장강도 측정에 의한 스트레이트 펌 모발의 형태학적 변화에 관한 연구)

  • Roh, Jung-Ae;Chang, Byung-Soo;Choi, Tae-Bu
    • Applied Microscopy
    • /
    • v.39 no.1
    • /
    • pp.49-56
    • /
    • 2009
  • In this study, we investigated tensile properties and ultrastructural changes of straight permed hair using the rheometer and the scanning electron microscopy. First, we compared the morphological characteristic between the virgin hair and the straight permed hair after testing tensile strength. Cuticle cells were heavily lifted off in straight permed hair than in the virgin hair. Cuticle cells were separated by the destruction of intercellular membrane complex and no destruction or damage were found in cytoplasm. In the comparative test for tensile characteristic between the virgin hair and the straight permed hair, tensile distance of the straight permed hair was decreased by 24.5% or 3.05 mm than the virgin hair. The tensile strength was decreased by 34.63% or $5.62\;g/cm^2$ and the maximum stress by 34.59% or 56.12 g. As a result, the tensile property dropped to the lowest level with the straight permed hair than with the bleached hair or the permanent dyed hair of previous studies.

Evaluation of the Stability of Geomembrane Liner System in Closed Waste Landfill (사용종료 폐기물 매립장의 멤브레인 차수시스템 안정성 평가)

  • Lee, Heung-Gil;Oh, Young-In
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.1
    • /
    • pp.39-46
    • /
    • 2010
  • Recently, the effective use of closed waste landfill nearby urban areas has been demanded, because of the lack of the usable land. However, the reuse of closed landfill is needed an adequate stabilization of liner system. But most of these places are consisted of steep slope and hence it is necessary to use the geosynthetics liners in there. Liner system of waste landfills is an important facility which prevents leachate outgoing from the landfills and also groundwater infiltrating from surroundings into the landfills. During the waste disposal stage, differential settlement and tensile stress of the geosynthetic materials could occur due to impact load of trucks and dozers, waste loads and weak foundation soils. In this study, the tensile strength and tracer test were performed to evaluate the stability of geomembrane liner systems. Based on the tensile strength test result of in-situ geomembrane sample, the yield tensile strength maintain the suitable strength by specification and current law. However, according to the tracer test, the damage of geomembrane liner was detected on sanitary landfill section.

  • PDF