• Title/Summary/Keyword: 인장력 범위

Search Result 59, Processing Time 0.027 seconds

A Study on the Spot Weldability of Sn-37%Pb Coated Cu-sheet (Sn-37%Pb solder를 도금한 Cu 박판의 점 용접성에 관한 연구)

  • 박창배;김미진;정재필
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.3
    • /
    • pp.45-50
    • /
    • 1999
  • Copper has been widely used for the electronic parts, and especially spot welded one for the leads of condenser or resistor. However, copper is generally hard to be spot welded because of its low electrical resistivity. For this experiment, Sn-37%Pb solder which has relatively higher resistivity was coated on the Cu-sheet to improve the spot weldability of copper. As the experimental variables welding pressure was varied from 100 to 200kgf, welding time from 20 to 50ms, and welding current from 100 to 2500A. Experimental results showed that the solder coated Cu-sheet can be spot welded under the conditions of 400~2200A welding current, 100~200kgf pressure and 20-50ms welding time. The tensile shear strength of the spot welded joint increased with welding current up to the critical current, and after the critical value decreased with current.

  • PDF

Absorbing Characteristic of EM wave for Dielectric PZT and ferrite in damping material (유전체 PZT와 페라이트 소재를 첨가한 충격흡수재의 전자파 흡수능)

  • 홍재일;강정진;이상회
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.37 no.2
    • /
    • pp.91-95
    • /
    • 2000
  • A new damping composite materials with asphalt and EM absorber are studied for high advantage values. The composite Ni-Zn ferrite and dielectric PZT with a main material is well developed of EM absorbing, and is continuous maintained of origin character, damping absorbing. Experiments and calculation results are shown to act two points frequencies at 928MHz and from 2MHz to 4GHz below -l0dB The narrow band widths of ferrite change to broad band as insert of dielectric material, PZT good of EM wave absorbtion and broad band widths in multi layers with ferrite These are applied to develop of new material at new need frequencies.

  • PDF

Influence of Glass Fiber Orientation on the Bi-directional GFRP Characteristics (직교이방향 GFRP 재료 특성에 미치는 유리 섬유방향의 영향)

  • Suh, Jung-Joo;Moon, Duk-Hong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.21 no.1
    • /
    • pp.75-81
    • /
    • 1985
  • The tensile and dielctric strength of the epoxied resin with bi-directional woven glass fibers with a laminate of two layers(G-10) are studied, and the test parameter is the angle between fiber orientation and the tensile axis. The obtained results may be summaried as follows: 1) when the angle between fiber orientation and tensile axis was varied from 0$^{\circ}$ to 45$^{\circ}$ the yield and fracture stresses have a tendency to decrease with increase in the angle. Especially, the decrease rates in the yield and fracture stresses are changed remarkably in the range of 0$^{\circ}$ to 15$^{\circ}$. 2) The fracture strain has showed the maximum value when the angle between fiber orientation and tensile axis is 45$^{\circ}$, and showed the rapid rate of change from 15$^{\circ}$ to 45$^{\circ}$. 3) For the sample with same angle between fiber orientation and tensile axis the maximum dielectric strength under compressive stress is decreased with increase in tensile stress, when the compressive stress is increased as a parameter of tensile stress. 4) When the angle between fiber orientation and tensile axis is 45$^{\circ}$, the dielectric strength showed the worst value, as the mechanical strength did.

  • PDF

Micro-tensile Bond Strength of Composite Resin Bonded to Er:YAG Laser-prepared Dentin (Er:YAG 레이저로 삭제된 상아질에 대한 컴포지트 레진의 미세인장결합강도에 관한 연구)

  • Min, Suk-Jin;Ahn, Yong-Woo;Ko, Myung-Yun;Park, June-Sang
    • Journal of Oral Medicine and Pain
    • /
    • v.31 no.3
    • /
    • pp.211-221
    • /
    • 2006
  • Purpose The aims of this study were to evaluate micro-tensile bond strength of composite resin bonded to dentin following high-speed rotary handpiece preparation or Er:YAG laser preparation with two different adhesive systems and to assess the influence of different Er:YAG laser energies on the micro-tensile bond strength. Materials and Methods In this study, 40 third morlars were used. Flat dentin specimans were obtained and randomly assigned to eight groups. Dentin surfaces were prepared with one of four cutting types: carbide bur, Er:YAG laser (2 W, 3 W and 4 W) and conditioned with two bonding systems, Scotchbond Multipurpose Plus (SM), Clearfil SE bond (SE) and composite resin-build ups were created. After storage for 24 hours, each specimen was serially sectioned perpendicular to the bonded surface to produce more than thirty slabs in each group. Micro-tensile bond strength test was performed at a crosshead speed of 1.0 mm/min. Micro-tensile bond strengths (${\mu}TBS$) were expressed as means$\pm$SD. Data were submitted to statistical analysis using two-way ANOVA, one-way ANOVA, Student-Newman-Keuls' multiple comparison test and t-test. Results and Conclusion 1. Regardless of bonding systems, the ${\mu}TBS$ according to cutting types were from highest to lowest : 3 W, 2 W, Bur, and 4 W. In addition, there was no significant difference between Bur and 4 W (p<0.001). 2. Regardless of cutting types, SM showed significantly higher ${\mu}TBS$ than SE (p<0.001). 3. Bonding to dentin conditioned with SM resulted in higher ${\mu}TBS$ for 3 W compared to Bur, 2 W, and 4 W. There was no significant difference between 2 W and Bur (p<0.001). 4. Bonding to dentin conditioned with SE resulted in higher ${\mu}TBS$ for 3 W compared to 2 W, 4 W, and Bur. Bur exhibited significant lower ${\mu}TBS$ than all other cutting types. There were no significant differences between 3 W, 2 W and between 4 W and Bur (p<0.001). 5. The ${\mu}TBS$ of laser cutting groups were shown in order from highest to lowest: 3 W, 2 W and 4 W in two bonding systems. There was no significant difference between 2 W and 3 W in SE (p<0.001). : The ${\mu}TBS$ of composite resin bonded dentin was significantly affected by interaction between the cutting type and bonding system. In the range of 2 W-3 W, cavity preparation of the Er:YAG laser seems to supply good adhesion of composite resin restoration no less than bur preparation. In particular, if you want to use the self-etching system, including Clearfil SE bond for the purpose of a simplification of the bonding procedures and prevention of adverse effects by excessive etching, an Er:YAG laser may offer better adhesion than a bur.

Single-frequency Wavelength Tunable Erbium-doped Fiber Ring Laser (단일 주파수로 발진하는 파장 가변 어븀 첨가 광섬유 링 레이저)

  • Kim, Ryun-Kyung;Chu, Su-Ho;Han, Young-Geun
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.5
    • /
    • pp.185-189
    • /
    • 2010
  • We demonstrate a single-frequency wavelength tunable erbium-doped fiber (EDF) ring laser. We used an unpumped-EDF as a saturable-absorber in order to obtain a stable single-frequency with a narrow-linewidth single-polarization mode in the ring cavity. The lasing wavelength was controlled by using bending-induced strain, such as tension and compression strain corresponding to the bending direction, applied to the fiber gratings. The fiber laser exhibited an output power of -1.85 dBm at a wavelength of 1540.72 nm for a pumping power of ~400 mW. An extinction ratio was measured to be more than 60 dB. The proposed tunable fiber laser maintains nearly the same output power while its lasing wavelength is controlled over in a wavelength range of 5 nm.

Analysis on Physical and Mechanical Properties of Rock Mass in Korea (국내에 분포하는 암반의 물리·역학적 특성 분석)

  • Seo, Yong-Seok;Yun, Hyun-Seok;Kim, Dong-Gyou;Kwon, O-Il
    • The Journal of Engineering Geology
    • /
    • v.26 no.4
    • /
    • pp.593-600
    • /
    • 2016
  • To understand the mechanical properties of rock masses and intact rock in Korea, data from 4,280 in situ and laboratory tests from 107 tunnels on general national roads were analyzed. The mechanical properties (unit weight, cohesion, friction angle, modulus of deformation, Young's modulus, Poisson's ratio, uniaxial compressive strength, tensile strength, coefficient of permeability, and specific gravity) were analyzed by rock types and strength of rock in each rock type. The results of analysis, the mean specific gravity was highest in gneiss. The coefficient of permeability and Poisson's ratio show the highest mean values in granite and metamorphic rock, respectively. In addition, the unit weight, cohesion and friction angle in sedimentary rock, modulus of deformation, Young's modulus, uniaxial compressive strength and tensile strength in volcanic rock have the highest mean values. The values for each mechanical property showed wide ranges by the heterogeneity and anisotropy of rock masses in spite of detailed analysis by rock type and classification of rocks according to the strength.

Sports-related Overuse Injuries: Elbow joint (스포츠와 연관된 과사용 증후군: 주관절)

  • Oh, Jeong-Hwan;Keum, Jung-Sup;Park, Jin-Young
    • Journal of Korean Orthopaedic Sports Medicine
    • /
    • v.7 no.2
    • /
    • pp.67-74
    • /
    • 2008
  • Repetitive overhead throwing exerts significant mechanical stress on the elbow joint. Pitching in baseball, serving in tennis, spiking in volleyball, passing in American football and launching in javelin-throwing can all produce elbow pathology by forceful valgus stress, with medial stretching, lateral compression and posterior impingement. This stress can lead to developmental anatomic changes in the young thrower. Asymptomatic pathology in the shoulder and elbow joint is prevalent and, with overuse, can progress to disabling injury. Joint injury occurs as a result of the body's inability to properly coordinate motion segments during the pitching delivery, leading to further structural damage. The implications of acute and overuse injuries and the possibility of permanent damage should be understood by parents, coaches and the athletes. Proper understanding of the intrinsic and extrinsic risk factors that could lead to elbow injuries is thus required. Measures to prevent elbow injuries should include proper coaching, warm-up, medical expertise and protective gear. Injury prevention and rehabilitation should center on optimizing pitching mechanics, core strength, scapular control, and joint range of motion.

  • PDF

Development of Innovative Prestressed Support Earth Retention System (IPS 흙막이 공법의 개발)

  • Kim, Nak-Kyung;Park, Jong-Sik;Han, Man-Yop;Kim, Moon-Young;Kim, Sung-Bo
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.2
    • /
    • pp.107-113
    • /
    • 2004
  • A new innovative prestressed support (IPS) earth retention system has been developed and introduced. The IPS is a wale system prestressed by steel wires. The IPS consists of wale, wires, and H-beam support. The IPS provides a high flexural stiffness to resist the bending by earth pressures. The IPS earth retention system provides a larger spacing of support, economical benefit, construction easiness, good performance, and safety control. This paper explains basic principles and mechanism of new IPS system and presents a design method of IPS earth retention system. In order to investigate applicability and safety of new IPS system, field tests were performed in a trench excavation. The new IPS system applied in a trench excavation was performed successfully. The measured performances of IPS system were presented and discussed.

Analytical Formula for the Equivalent Mohr-Coulomb Strength Parameters Best-fitting the Generalized Hoek-Brown Criterion in an Arbitrary Range of Minor Principal Stress (임의 최소주응력 구간에서 일반화된 Hoek-Brown 파괴기준식을 최적 근사하는 등가 Mohr-Coulomb 강도정수 계산식)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.29 no.3
    • /
    • pp.172-183
    • /
    • 2019
  • The generalized Hoek-Brown (GHB) failure criterion developed by Hoek et al. (2002) is a nonlinear function which defines a stress condition at failure of rock mass. The relevant strength parameter values are systematically determined using the GSI value. Since GSI index is a value quantifying the condition of in-situ rock mass, the GHB criterion is a practical failure condition which can take into the consideration of in-situ rock mass quality. Considering that most rock mechanics engineers are familiar with the linear Mohr-Coulomb criterion and that many rock engineering softwares incorporate Mohr-Coulomb criterion, the equations for the equivalent friction angle and cohesion were also proposed along with the release of the GHB criterion. The proposed equations, however, fix the lower limit of the minor principal stress range, where the linear best-fitting is performed, with the tensile strength of the rock mass. Therefore, if the tensile stress is not expected in the domain of analysis, the calculated equivalent friction angle and cohesion based on the equations in Hoek et al. (2002) could be less accurate. In order to overcome this disadvantage of the existing equations for equivalent friction angle and cohesion, this study proposes the analytical formula which can calculate optimal equivalent friction angle and cohesion in any minor principal stress interval, and verified the accuracy of the derived formula.

Behavior of Concrete Bridge Deck Using Hybrid Reinforcement System (Hybrid Reinforcement System을 이용한 콘크리트 교량상판 슬래브의 거동)

  • Park Sang-Yeol;Cho Keun-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.451-458
    • /
    • 2004
  • This study describes the basic concept and the applicability of Hybrid Reinforcement System using conventional steel reinforcing bars and Fiber Reinforced Polymer bars. The concrete bridge decks are assumed to be supported by beams and reinforced with two layers of reinforcing bars. In concrete bridge deck using HRS, the top tensile force for negative moment zone on beam supports is assumed to be resisted by FRP reinforcing bars, and the bottom tensile force for positive moment zone in the middle of hem supports is assumed to be resisted by conventional steel reinforcing bars, respectively. The FRP reinforcing bars are non-corrosive. Thus, the steel reinforcement is as far away as possible from the top surface of the deck and protected from intrusion of corrosive agent. HRS concrete bridge deck has sufficient ductility at ultimate state as the following reasons; 1) FRP bars have lower elastic modulus and higher ultimate strain than steel re-bars have, 2) FRP bars have lower ultimate strain if provided higher reinforcement ratio, 3) ultimate strain of FRP bars can be reduced if FRP bars are unbonded. Test results showed that FRP and HRS concrete slabs are not failed by FRP bar rupture, but failed by concrete compression in the range of ordinary reinforcement ratio. Therefore, in continuous concrete bridge deck using HRS, steel reinforcing bars for positive moment yield and form plastic hinge first and compressive concrete fail in the bottom of supports or in the top of the middle of supports last. Thus, bridge deck consumes significant inelastic strain energy before its failure.